• Title/Summary/Keyword: 중량충격음

Search Result 130, Processing Time 0.026 seconds

Heavy-weight Impact Sound Characteristics of Floor Structure of a Small-Sized Wall-Slab Apartment Building having Joist Slab (장선슬래브를 갖는 소형평형 벽식구조 아파트 바닥구조의 중량충격음 특성)

  • Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • In the present paper, as a way of reducing heavyweight impact sounds, in particular, among floor impact sounds which have come to the forefront as a social issue recently, a floor joist slab is proposed that is expected to bring an effect of reducing heavyweight impact sounds through a shift in the natural frequency by installing a floor joist on a flat-type slab to increase the rigidity of the floor slab, differently from the existing method that increases the thickness of floor slab, and the heavyweight impact sound characteristics depending on the floor joist height and interval are interpretively analyzed. As a result of the analysis, though a trend is shown where the sound pressure level decreases as the slab thickness of floor joist increases, and as no difference is shown when thickness is above a certain value, it is thought that there is a threshold for the effect of an increase in floor thickness on blockage of heavyweight impact sounds. Also, as an increase in floor rigidity resulting from an increase in the floor joist height and a decrease in the interval does not lead to a consistent increase in the performance of blocking heavyweight impact sounds, it is thought that a different floor joist height and interval should be applied to each type of house to expect optimum performance of blocking heavyweight impact sounds, and an increase of 100mm in the floor joist height or a decrease of about 100mm in the interval is expected to bring an effect of reducing heavyweight impact sounds by about 1dB to 2dB.

Rating Floor Impact Noise in Apartment Buildings Through Subjective Evaluation Tests (청감실험에 의한 공동주택 바닥충격음의 평가등급 설정)

  • 전진용;류종관
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.88-95
    • /
    • 2003
  • The auditory experiments based on subjective responses were undertaken for the standard heavy and light weight impact noise and rubber ball impact noise, jumping noise to investigate relations between floor Impact noise levels and subjective responses and to establish the upper/lower limits of floor impact noises. As a result, it was shown that relations between floor Impact noise levels and subjective responses was linear and the lower limit of heavy-weight impact noise was L/sub i, Fmax, AW/=46㏈ and the lower limit of light-weight impact noise was L'/sub n,AW/=56㏈. Finally the 3 subjective classes of floor impact noises were established.

Variation Characteristics of Floor Impact Sound by Ceiling Structures in Apartment Buildings (공동주택에 천장구조에 의한 바닥충격음 변화특성에 관한 연구)

  • 조창근
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.13-16
    • /
    • 1993
  • 본 연구에서는 공동주택의 바닥충격음 차음성능 향상을 위한 설계자료의 제시를 위해 천장구조가 서로 다른 공동주택을 대상으로 경량 및 중량 바닥충격음의 현장측정을 통하여 공동주택의 천장구조에 의한 바닥충격음 변화특성을 분석하고 차음성능을 평가하였다. 측정대상 건물에서 천장을 설치한 경우가 비교적 높은 충격음 차음성능 분포를 보이는 것으로 나타났으며, 바닥슬래브 하부 천장에 공기층과 완충재를 함께 설치하는 것은 기존 공동주택 등에서 경량 및 중량 바닥충격음 차음성능을 향상시키기 위한 효과적인 방안임을 확인하였다.

  • PDF

Performance Evaluation of the Floor Impact Sound Insulation in Steel Framed Modular House (강재프레임 모듈러주택의 바닥충격음 성능평가)

  • Chun, Young-Soo;Bang, Jong-Dae;Kim, Gap-Deug;Yoo, Song-Lee
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.81-89
    • /
    • 2014
  • This paper presents various attempts to secure the floor impact sound insulation performance on the dry floor system of steel framed modular house that lately attracted domestic attention. Test results show that in the condition of using dry floor system of D31(D32), the light-weight impact noise performance records the top level in the floor impact sound insulation performance grading system. the heavy-weight floor impact noise performance meets the minimum sound level limit in the floor impact sound insulation performance grading system that enacted regulation on housing construction standards.

Study on the Test Method of Impact Sound Pressure Level Using the Miniature Mortar (축소모형 시험판을 이용한 바닥충격음 측정방법에 관한 연구)

  • Park, Cheol-Yong;Hong, Gu-Pyo;Lee, Sang-Jun;Kim, Jin-Kyu;Kim, Kyu-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1446-1449
    • /
    • 2007
  • 인정바닥구조는 신청에서부터 인정서 발급까지 기본적으로 2개월 이상이 소요되며, 신청 제품이 많을수록 그 기간은 길어지게 된다. 본 논문은 이와 같은 완충재의 성능을 확인하기 위해 소요되는 기간과 비용을 획기적으로 단축할 수 있는 간편한 방법을 제시하기 위한 것이다. 완충재 설치 이후 습식으로 시공되는 경량기포콘크리트와 모르터를 사전에 일정 크기로 제작(축소모형 시험판)한 후 골조가 완성된 현장에서 바닥충격음을 측정하는 방법이다. 완충재 2개 제품에 대하여 축소모형 시험판을 이용하여 측정한 결과와 전체 세대를 시공한 후 측정한 결과를 비교한 결과 경량충격음은 축소모형 시험판이 훨씬 낮은 결과를 나타냈지만 중량충격음은 비슷한 결과를 나타냈다. 이로써 축소모형 시험판을 이용하여 바닥충격음을 측정하는 것은 경량충격음을 저감하기 위한 재료 선정 및 제품 시스템 구성 등에 활용될 수 있을 것이며, 현장에서 중량충격음 차단성능을 신속하게 검증할 수 있는 방법으로 활용할 수 있을 것으로 기대된다.

  • PDF

Characteristics of the floor impact sound by water to binder ratio of mortar (마감모르타르 물결합재비에 따른 바닥충격음 특성 변화)

  • Lee, Won-Hak;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.671-677
    • /
    • 2021
  • The present study aims to investigate the influence of the water to binder ratio of finishing mortar on the floor impact sound of apartments. For this, same resilient materials Expanded Polystyrene (EPS) with constant dynamic stiffness and different mortar layers with 52 %, 66 % and 72 % water to binder ratio respectively were used to build floating floor structures on which floor impact sounds were measured in standard testing facilities. As a result, it was found that light-weight floor impact sound was transmitted well when the water to binder ratio was 52% due to the high density. In case of heavy-weight floor impact sounds, since water to binder ratio of finishing mortar becomes higher as the weight of upper layer of resilient material lighter, it was shown that the natural frequency of floating floor structure moves to 63 Hz bandwidth which eventually cause a higher sound pressure level of floor impact sound. Thus, effect of water to binder ratio of mortar on the heavy-weight floor impact sounds was investigated.

A Physical Properties of Lightweight Foamed Concrete According to Lightweight Aggregate Types and Foaming agent Types (경량골재와 기포제 종류에 따른 경량기포 콘크리트의 물리적 특성)

  • Kim, Ha-Seog;Lee, Sea-Hyun;Sun, Jung-Soo;Kim, Jin-Man
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.435-444
    • /
    • 2016
  • In Korea, approximately 48% of all households live in apartments, which are a form of multi-unit dwellings, and this figure increases up to 58%, when row houses and multiplex houses are included. As such, majority of the population reside in multi-unit dwellings where they are exposed to the problem of floor impact noise that can cause disputes and conflicts. Accordingly, this study was conducted to manufacture a high-weight, high-stiffness foamed concrete in order to develop a technology to reduce the floor impact noise. For the purpose of deriving the optimum mixing ratio for the foamed concrete that best reduces the floor impact noise, the amounts of the foaming agent, lightweight aggregate and binder were varied accordingly. Also, the target characteristics of the concrete to be developed included density of over $0.7t/m^3$, compressive strength of over $2.0N/mm^2$ and thermal conductivity of under 0.19 W/mK. The results of the experiment showed that the fluidity was very excellent at over 190 mm, regardless of the type and input amount of foaming agent and lightweight aggregate. The density and compressive strength measurements showed that the target density and compressive strength were satisfied in the specimen with 50% foam mixing ratio for foamed concrete and in all of the mixtures for the lightweight aggregate foamed concrete. In addition, the thermal conductivity measurements showed that the target thermal conductivity was satisfied in all of the foamed concrete specimens, except for VS50, in the 25% replacement ratio case for Type A aggregate, and all of the mixtures for Type B aggregate.

Characteristics of Impact Force and Floor Impact noise for Man Walking and Standard Impact Sources (보행과 표준중량충격원의 충격력 및 바닥충격음 특성)

  • Park, Hong-Gun;Mun, Dae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.216-224
    • /
    • 2014
  • 층간소음의 대부분의 원인이 아이들 뛰거나 발걸음으로 나타나고 있어 층간소음 저감을 위한 선행 연구로 층간소음의 주요 충격원인 보행 행위에 대한 정밀한 연구가 필요하다. 성인 보행 충격력과 그에 따른 바닥충격음을 계측하여 보행하중이 바닥충격음에 영향을 주는 요소를 분석하였다. 보행하중 중 발 뒤꿈치 충격력은 전체 충격하중을 주파수 특성을 대변할 수 있는 임펄스 형태의 하중으로 충격력은 뱅머신 또는 고무공보다 낮지만 1 차 영점(First zero)이 80Hz 정도로 높아 유효 가진 주파수 대역이 표준 중량충격원 보다 높았다. 구조물과 수음실의 고유모드 특성으로 인해 외부 충격에 대한 구조체 진동 및 음압의 공진 현상이 발생되기 때문에 공진 성분이 포함되는 바닥충격음 레벨은 순수 충격력 특성인 보행 또는 표준 중량충격원의 옥타브 밴드 충격력 폭로레벨과는 전혀 다른 주파수 특성을 나타내었다.

  • PDF

The Research of the Heavy-Weight Impact Sound Characteristic by Live load Installation on the Source Room (공동주택 음원실 바닥의 하중 설치에 따른 중량충격음 특성에 관한 연구)

  • Kim, Kyoung-Woo;Yang, Kwan-Seop;Sohn, Jang-Yeul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.235-242
    • /
    • 2007
  • The test and evaluation of floor impact sound is mainly conducted before move in the residence. Floor impact sound generating is actually the conditions in which a heavy load like a curtain and furniture is installed, the situation before and after move in the residence is different. In this study, we investigate the floor impact sound variations according to the live load installation like furniture in the source room. The vibration acceleration level and floor impact sound level variation were measured before and after live load ($200kg/m^2$) installation in the floor impact sound test building and the field. The difference was not large although the vibration acceleration level and the floor impact sound level were reduced through measurement result of load installation. Resonance frequency was not changed by load installation.

Evaluation of uncertainty in measurement of floor impact sound insulation of buildings using standard heavy impact source (표준중량충격원을 이용한 건축물의 바닥 충격음 차단성능 측정불확도 평가)

  • Yong-Bong Lee;Hyok-Je Kwon;Chang-Whan Kim;Man-Hee Cho;Hang Kim;SungSoo Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.143-151
    • /
    • 2023
  • In this paper, a method for evaluating the measurement uncertainty is proposed when measuring of floor impact sound insulation of buildings using standard heavy impact source. In addition to the effect of repeated measurements, several other factors such as measurement location, impact location, equipment used for sound pressure measurement, and heavy impact source, were considered. A mathematical model for the average maximum impact sound level and the uncertainty evaluation method for each factor were proposed. The present proposed method was applied to measurement results to evaluate the average maximum impact sound pressure level and the measurement uncertainty.