• Title/Summary/Keyword: 중량최적설계

Search Result 228, Processing Time 0.022 seconds

Design Parameter Analysis of a Solar-Powered, Potential Energy-Storing, Long Endurance UAV (위치에너지를 축적하는 태양동력 장기체공 무인기의 설계 인자 분석)

  • Yang, In-Young;Lee, Bo-Hwa;Chang, Byung-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.927-934
    • /
    • 2011
  • Design parameter analysis is performed for a solar-powered UAV, storing potential energy by climb flight. Parameters related to the flight for saving potential energy, i.e. minimum & maximum altitudes for level flight, gliding & climbing angle, design point speed & altitude, gliding & climbing start time are investigated as design parameters. Weight and size of the UAV are determined using a weight model for the components of the solar-powered UAVs. Produced energy and consumed energy are calculated using these weight and size, yielding the required weight of the battery for a given mission. Relationship between the total weight of the UAV and each parameter is investigated. For the parameters listed above, there exist their ranges only where the design is possible. And there exist optimal values of these parameters minimizing the total weight.

A Study on the Minimum Weight Design for Flexible Structure (유연구조물의 최소중량설계에 관한 연구)

  • 박중현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.153-159
    • /
    • 2004
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken.

Optimum Design of Greenhouse Structures Using Genetic Algorithms (유전자알고리즘에 의한 온실구조의 최적설계)

  • Park, Choon Wook;Yuh, Baeg Youh;Lee, Hyun Woo;Lee, Suk Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.171-179
    • /
    • 2007
  • The greenhouse discrete optimum design program was developed using discrete optimum algorithm based on the genetic algorithm. The basic search method for the optimum design is the genetic algorithm, which is known to be very efficient for discrete optimization. In this paper, the objective function was the weight of the greenhouse structures and the constraints were the limits state design method. The design variables were galvanized steel pipes for plastic housing KSD 3760. Objective criteria were presented for the design of economic greenhouse structure and evaluation of its stability. The standardizations of greenhouse structure were used, as well as the normalization of greenhouse-related materials. Design examples were given to show the applicability of the optimum design using the discrete optimum algorithm based on the genetic algorithm of this study.

A Study on the Optimized Design of Structures Considering Reliability Analysis (신뢰성을 고려한 구조물의 최적설계에 관한 연구)

  • Park, Hyun-Jung;Shin, Soo-Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.217-224
    • /
    • 2003
  • The objective of this paper is to suggest the technique of program to perform structural optimization design after reliability analysis to consider the uncertainties of structural reponses. AFOSM method is used for reliability analysis then, structural optimization design is developed for 10-bar truss and 3 span 10 stories planar frame model is subject to reliability indices and probability of failure by reliability analysis. SQP method is used for optimization design method, this method has many attractions. As a result of analyzing with having and not having constraints and uncertainty, the minimum weight of truss and planar frame increased respectively 20.92% and average 8.08%.

Truss Design Optimization using Ant Colony Optimization Algorithm (개미군락최적화 알고리즘을 이용한 트러스 구조물의 설계최적화)

  • Lee, Sang-Jin;Han, Yu-Dong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.709-712
    • /
    • 2010
  • 본 논문은 개미군락최적화 알고리즘을 이용한 트러스 구조물의 설계최적화에 대한 이론적 배경과 수치해석 결과를 기술하였다. 트러스의 설계최적화를 수행하기 위하여 구조물의 중량을 최소화하는 것을 목적 함수로 하고 구조물에서 발생하는 응력과 변위의 허용치를 초과하지 않는 것을 구속조건으로 이용하였다. 본 연구에서는 개미군락알고리즘을 구조물의 최적화에 적용하기 위하여 외판원문제(travelling salesman problem: TSP)를 재 정의하는 방법을 사용하였으며 최대-최소개미시스템(max-min ant system)을 도입하여 트러스 구조물의 최적설계를 수행하였다. 이때 이산화 된 설계변수를 사용하였으며 구속조건을 처리하기 위해서 벌점함수를 사용하였다. 본 연구를 통하여 개미군락최적화 알고리즘은 구조최적화에 그 적용 가능성이 높았으며 전통적인 최적검색 기법의 새로운 대안으로 이용될 수 있는 것으로 나타났다.

  • PDF

On the Design of Lifting Lugs Based on the Ultimate Strength (최종강도에 기초한 리프팅 러그의 설계)

  • Lee, Joo-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Lifting lugs are frequently used to transport and to turn over blocks of ship and offshore structures in a shipyard. As the shipbuilding technology has been developed, blocks has become bigger and bigger, and block management technology takes a more important role in shipbuilding to enhance the productivity. For the sake of economy as well as safety in design of lug structure, needed is a more rational design procedure based on the ultimate strength derived through the rigorous non-linear structural analysis considering both the material and geometric non-linearity. This study is aimed at deriving the optimum design of T type lug structure which is frequently used in a shipyard. The optimum thickness of lug's main body is to be determined based on the results of non-linear strength analysis. As far as the present results for T type lugs having various capacity are concerned, it can be said that the present optimum design result can guarantee both safety and economy. From the fact that any regular trend cannot be found in weight reduction to the capacity of lugs, it seems to be necessary to review the current design procedure of lug structure. The present design procedure can be extensively used in design of various types of lug structures used in shipyard.

A Sensitivity Analysis and Parametric Study for the Establishment of the Helicopter Initial Design Model (헬리콥터 초기 설계 모델에 대한 민감도 분석 및 매개변수 연구)

  • Kim, Seung Bum;Choi, Jong Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.368-376
    • /
    • 2015
  • This paper is the study on the establishment of design model to improve design efficiency using modified weight estimation equation on the initial design stage for development of a helicopter. The methodology to extract coefficients of the weight estimation equation was proposed through the influence investigation for the weight of components and the parameter study and sensitivity analysis for design variables such as the rotor disk loading, the number of blade and the aspect ratio of blade were also performed. As a result of study, the relation of parameters and degree of sensitivity of parameters on helicopter design are considerable points for optimization of helicopter characteristics, and it is necessary for designer to consider the complex relation of main parameters.

Nonlinear Elastic Optimal Design Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 탄성 최적설계)

  • Kim, Seung Eock;Ma, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • The optimal design method in cooperation with a nonlinear elastic analysis method was presented. The proposed nonlinear elastic method overcame the drawback of the conventional LRFD method this approximately accounts for the nonlinear effect caused by using the moment amplification factors of and. The genetic algorithm uses a procedure based on the Darwinian notions of the survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance among the sections of the database. They satisfy constraint functions and give the lightest weight to the structure. The objective function was set to the total weight of the steel structure. The constraint functions were load-carrying capacities, serviceability, and ductility requirement. Case studies for a two-dimensional frame, a three-dimensional frame, and a three-dimensional steel arch bridge were likewise presented.

Optimum Design of Braced Steel Framed Structures Considering Soil Condition Under Earthquake Loads (지반조건을 고려한 브레이스된 강골조 구조물의 내진 최적설계)

  • Park, Moon-Ho;Kim , Ki-Wook;Lee , Seung-Jo;Park , Jung-Hwal
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.97-107
    • /
    • 2006
  • This study is structural analysis and continuous, discrete optimum design of braced steel frame structures under earthquake loads considering soil condition. The program which is able to perform simultaneously structural analysis and continuous, discrete optimum design, it is applied steel frame structures using unbraced, Z-braced, and X-braced types and analyze the program about static loads and seismic loads. The purpose of this study is to present proper braced type for seismic effects by comparing and analyzing results of analytic method about various cases using specially Newmark-Hall design spectrum, ATC design spectrum and ATC equivalent static analysis and finding minimum weight and design variables which satisfy the ultimate strength requirements of AISC-ASD specifications, the serviceability requirements and allowable story drift requirements of ATC-3-06 and various constraints.

Optimum Design of Composite Laminated Beam Using GA (유전알고리즘을 이용한 복합 적층보의 최적설계)

  • 구봉근;한상훈;이상근
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.349-358
    • /
    • 1997
  • The present paper describes an investigation into the application of the genetic algorithm (GA) in the optimum design of composite laminated structure. Stochastic processes generate an initial population of designs and then apply principles of natural selection/survival of the fittest to improve the designs. The five test functions are used to verify the robustness and reliability of the GA, and as a numerical example, minimum weight of a cantilever composite laminated beam with a mix of continuous, integer and discrete design variables is obtained by using the GA with exterior penalty function method. The design problem has constraints on strength, displacements, and natural frequencies, and is formulated to a multidimensional nonlinear form. From the results, it is found that the GA search technique is very effective to find the good optimum solution as well as has higher robustness.

  • PDF