• Title/Summary/Keyword: 중량최적설계

Search Result 227, Processing Time 0.029 seconds

Papers : Preliminary Design of Hybrid Rocket Based on HTPB Fuel (논문 : HTPB 연료를 사용한 하이브리드 로켓 기초설계)

  • Ha,Yun-Ho;Lee,Chang-Jin;Gwon,Sun-Tak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.124-131
    • /
    • 2002
  • In this study, a preliminary design code was developed for the initiation of HTPB/LOX hybrid rocket system. HTPB was assumed to have a constant regression rate. And initial input parameters; number of port, initial O/F ratio F/W ratio, and chamber pressure, were varied to analyze the effects on the performance and geometry of rocket system. The results showed a qualitatively good agreement with previous data. And it was revealed that there exists a number of design results that meet the mission requirements and that we could find an optimal design case if a proper constraint would be imposed. Thus, it is natural to account for the optimal algorithm during the design procedure and to consider more realistic and reliable formulations used for weight estimation of structural supports and accessories.

Approximate Optimization Based on Meta-model for Weight Minimization Design of Ocean Automatic Salt Collector (해양자동채염기의 최소중량설계를 위한 메타모델 기반 근사최적화)

  • Song, Chang Yong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.109-117
    • /
    • 2021
  • In this paper, the meta-model based approximate optimization was carried out for the structure design of an ocean automatic salt collector in order to minimize the structure weight. The structural analysis was performed by using the finite element method to evaluate the strength performance of the ocean automatic salt collector in its initial design. In the structural analysis, it was evaluated the strength performance of the design load conditions. The optimum design problem was formulated so that design variables of main structure thickness would be determined by minimizing the structure weight subject to strength performance constraints. The meta-models used in the approximate optimization were the response surface method, Kriging model, and Chebyshev orthogonal polynomials. Regarding to the numerical characteristics, the solution results from approximate optimization techniques were compared to the results of non-approximate optimization. The Chebyshev orthogonal polynomials among the meta-models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the ocean automatic salt collector.

Simultaneous Optimum Design of Structural and Control Systems for Truss Structure with Collocated Sensors and Actuators (센서/액츄에이터 콜로케이션을 이용한 트러스 구조물에 대한 구조계와 제어계의 동시 최적설계)

  • Tada, Yukio;Park, Jung-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.133-138
    • /
    • 1999
  • 3차원 트러스 구조물을 설계대상으로, 구조계와 제어계의 동시최적설계문제에 대하여 고찰하였다. 구조 설계에대한 최소중량설계와 제어 설계에대한 외란 억제문제를 설계목적으로 고려하였다. 그리고, 본연구의 유용성을 입증하기위한 수치 시뮬레이션의 결과를 기술하였다.

  • PDF

Optimal Design of Trusses Using Advanced Analysis and Genetic Algorithm (고등해석과 유전자 알고리즘을 이용한 트러스 구조물의 최적설계)

  • Choi, Se-Hyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.161-167
    • /
    • 2008
  • In this paper, the optimal design of trusses using advanced analysis and genetic algorithm is performed. An advanced analysis takes into account geometric nonlinearity and material nonlinearity. The micro genetic algorithm is used as optimization technique. The weight of structures is treated as the objective function. The constraint functions are defined by load-carrying capacities and displacement requirement. The effectiveness of the proposed method is verified by comparing the results of the proposed method with those of other method.

Design Sensitivity Analysis and Optimal Design to Control Forced Vibration of Structure (구조물 진동제어를 위한 민감도해석 및 최적설계)

  • 이재환;이광한;송의준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.39-44
    • /
    • 1994
  • 본 문에서는 조화기진력(harmonic force) 하에서 보조변수법을 적용한 연속법이 사용되어 선형구조물의 변위, 응력에 대한 치수 설계 민감도가 계산되었다. 또한 최적설계가 조화 하중의 경우에 시도되어 주어진 제한조건들을 만족하며 최소 중량이 계산되었다.

  • PDF

An Optimum Design of Sandwich Panel at Fixed Edges (고정지지된 Sandwich Panel의 최적설계에 관한 연구)

  • K.S. Kim;I.T. Kim;Y.Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.115-122
    • /
    • 1992
  • A sandwich element is a special Hybrid structural form of the composite construction, which is consisted of three main parts : thin, stiff and relatively high density faces separated by a thick, light, and weaker core material. In a sandwich construction, the shear deformation of the faces. Therefore, in the calculation of the bending stiffness, the shear effect should be included. In this paper, the minimum weight is selected as an object function, as the weight critical structures are usually composed of these kind of construction. To obtain the minimum weight of sandwich panel, the principle of minimum potential energy is used and as for the design constraints, the allowable bending stress of face material, the allowable shear stress of core material, the allowable value of panel deflection and the wrinkling stress of faces are adopted, as well as the different boundary conditions. For the engineering purpose of sandwich panel design, the results are tabulated, which are calculated by using the nonlinear optimization technique SUMT.

  • PDF

Design Optimization of Liquid Rocket Engine Using Genetic Algorithms (유전알고리즘을 이용한 액체로켓엔진 설계 최적화)

  • Lee, Sang-Bok;Lim, Tae-Kyu;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.25-33
    • /
    • 2012
  • A genetic algorithm (GA) has been employed to optimize the major design variables of the liquid rocket engine. Pressure of the main combustion chamber, nozzle expansion ratio and O/F ratio have been selected as design variables. The target engine has the open gas generator cycle using the LO2/RP-1 propellant. The gas properties of the combustion chamber have been obtained from CEA2 and the mass has been estimated using reference data. The objective function has been set as multi-objective function with the specific impulse and thrust to weight ratio using the weight method. The result shows about 4% improvement of the specific impulse and 23% increase of the thrust to weight ratio. The Pareto frontier line has been also obtained for various thrust requirements.

Design Parameter Optimization of Liquid Rocket Engine Using Generic Algorithms (유전알고리즘을 이용한 액체로켓엔진 설계변수 최적화)

  • Lee, Sang-Bok;Kim, Young-Ho;Roh, Tae-Seoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.127-134
    • /
    • 2011
  • A genetic algorithm (GA) has been employed to optimize the major design variables of the liquid rocket engine. Pressure of the main combustion chamber, nozzle expansion ratio and O/F ratio have been selected as design variables. The target engine has the open gas generator cycle using the LO2/RP-1 propellant. The gas properties of the combustion chamber have been obtained from CEA2 and the mass has been estimated using reference data. The objective function has been set as multi-objective function with the specific impulse and thrust to weight ratio using the weight method. The result shows about 4% improvement of the specific impulse and 23% increase of the thrust to weight ratio. The Pareto frontier line has been also obtained for various thrust requirements.

  • PDF

Multi-Objective Optimization of Steel Structures Using Fuzzy Theory (퍼지 이론을 이용한 강구조물의 다목적 최적설계)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.153-163
    • /
    • 2004
  • The main objective of this study is to develop a multi-objective fuzzy optimum design program of steel structures and to verify that the multi-objective fuzzy optimum design is more reasonable than the single objective optimum design in real structural design. In the optimization formulation, the objective functions are both total weight and deflection. The design constraints are derived from the ultimate strength of service ability requirement of AISC-LRFD specification. The structural analysis was performed by the finite element method and also considered geometric non-linearity. The different importance of optimum criteria were reflected with two weighting methods ; membership weighting method and objective weighting method. Thus, designers could choose rational optimum solution of structures with application of two weighting methods.

The Optimum Design of Truss Dome Structures by Evolution Strategy (진화전략을 이용한 트러스 돔 구조물의 최적설계)

  • Han, Sang-Eul;Kim, Man-Jung;Lee, Jae-Young;Ryu, Ji-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.396-399
    • /
    • 2009
  • 본 논문의 연구 목적은 생물의 진화 현상을 모방한 진화전략 알고리즘을 이용하여 돔형 트러스 구조물을 최적화 설계하는 것이다. 최적화 방법으로 부재 단면적의 최적화 값을 찾음으로써 최적 목적값 또는 최소 구조물 중량을 산출하는데 목적이 있다. 진화전략 알고리즘은 1960년대 중반, 실수기반 매개변수의 최적화로부터 소개되어 1970년대 많은 발전을 하였다. 진화전략은 컴퓨터 시스템 최적화 알고리즘 연구분야에서 많이 활용되며, 더불어 사용되는 유전자 알고리즘과는 다른 몇 개의 연산자를 가지고 있다. 본 논문에서는 진화전략에서 사용되는 연산자를 소개하고 연산자간의 논리 흐름과 수치예제로써 최적설계의 적합성을 확인해볼 수 있다.

  • PDF