• 제목/요약/키워드: 중량바닥충격음

검색결과 87건 처리시간 0.018초

수음실 잔향 시간변화에 따른 바닥충격음레벨 특성 - 잔향실을 중심으로 - (Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in a Reverberation Chamber)

  • 정정호;김정욱;정재군
    • 한국소음진동공학회논문집
    • /
    • 제23권3호
    • /
    • pp.274-281
    • /
    • 2013
  • Field measurement method of heavy/soft impact sound pressure level which is regulated in JIS and ISO has been using in Korea, Japan and Canada. It is reported that heavy/soft impact sound pressure level was varied by the sound field condition of receiving room such as sound absorption power and room volume. In this study, it is checked that heavy/soft impact sound pressure level was affected by the receiving sound field condition. Rubber ball and bang machine sound pressure level was measured in the vertically connected reverberation chamber. In oder to check the effect of receiving sound field on heavy/soft impact sound pressure, sound absorption power was changed with polyester sound absorption blankets with air space and glass wool. The reverberation time at 1 kHz band was changed from 10 s to 0.2 s by sound absorption material. Rubber ball sound pressure level measured without sound absorption material was 58 dB in $L_{i,Fmax,AW}$, but the level was 46 dB with sound absorption treatment. From this result, it is confirmed that sound field correction method is needed in the heavy/soft impact sound pressure level measurement method using bang machine and rubber ball.

표준실험동에서의 소음.진동 특성 (Noise and Vibration Characteristics of Floor Impact in a Test Building)

  • 정영;유승엽;이평직;정정호;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.92-95
    • /
    • 2005
  • In this study, Heavy-weight floor impact sound and vibration in concrete structures with different slab thickness have been measured in a test building. It was found that natural frequency increased according to increases of slab thickness, and acceleration level decreases. Results also show that the measurements in the 210 and 240mm slab structures are complied with the result from finite element analysis but the In and 180mm slab structures are not because the structures are constrained to the ground. Therefore, in modelling process the condition of sub-structures should be examined in relation to the boundary conditions.

  • PDF

표준실험동의 구조별 소음 진동 특성 (Noise and Vibration Characteristics of Construction structures in Standard Laboratory)

  • 정영;유승엽;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.390-393
    • /
    • 2005
  • In this study, examined heavy-weight floor impact sound to rahmen structure(steel reinforced concrete structure) and bearing-wall structure(box frame type structure) that have slab thickness of 4 form at a standard laboratory through noise and vibration measured. The results of ANSYS modeling of structures was predicted that the nature natural frequency increased according to change of thickness of each slab by finite element analysis, and acceleration value decreased. Rahmen structures compares with bearing-wall structure, nature frequency was predicted low. Measurement results of natural frequency and acceleration level for structures at a standard laboratory, tendency department such as ANSYS modeling appeared. Rahmen structures appeared that reduction effect is less in Acceleration level and heavy impact sound transmission level comparing with bearing-wall structure.

  • PDF

수음실 잔향시간 변화에 따른 중량 충격음 레벨 특성 - 실험실 환경을 중심으로 - (Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in Mock-up Test Rooms)

  • 정정호;이병권;연준오;전진용
    • 한국소음진동공학회논문집
    • /
    • 제24권4호
    • /
    • pp.339-347
    • /
    • 2014
  • Floor impact sound in high-rise apartment building became one of social problems. A lot of civil complaints on floor impact sound occur continuously and the number of disputes between neighbors in small and aged apartment buildings is increasing. Interests on heavy-weight impact sound pressure level measurement and evaluation method is increased. Previous study reported that heavy-weight impact sound level was changed by the sound field condition of receiving reverberation chamber. In this study, heavy-weight impact sound pressure level change by the receiving sound field condition was measured in standard test facility and mock-up test room. These two experimental conditions were designed to simulate averaged living room of common apartment units. By the change of sound absorption power in receiving room, heavy-weight impact sound pressure level in most of frequency bands were changed in standard test facility and mock-up room. Normalized maximum sound pressure level regulated in ISO 16032 showed wider range of heavy/soft impact sound pressure level. Heavy/soft impact sound pressure level change was became smaller by the application of standardized maximum sound pressure level and ISO/CD 10140-3 Amd 2 method. In the case of standardized maximum sound pressure level, absolute sound pressure level changed. From these results, receiving sound field correction method regulated in ISO/CD 10140-3 Amd 2 is needed for the precision measurement and evaluation of heavy-weight impact sound.

주파수 응답함수를 이용한 콘크리트 슬래브 가속도 및 바닥충격소음 예측 (Prediction of Concrete Slab Acceleration and Floor Impact Noise Using Frequency Response Function)

  • 문대호;박홍근;황재승
    • 한국소음진동공학회논문집
    • /
    • 제24권6호
    • /
    • pp.483-492
    • /
    • 2014
  • Uncomfortable feelings of occupants by indoor floor impact noise in a residential building are not accurately represented by the floor impact noise from a standard impact source. It is due to the characteristics of standard impact sources, which are different from the impact forces produced by occupants. It varies significantly by impact source, and it is not easy to be replicated for testing. As a result, the indoor floor impact noise under different acoustic conditions cannot be directly compared. Using frequency response function(FRF), which represents the input-output relationships of a dynamic system, it is possible to examine the characteristics of the system. Especially, FRF can predict the response of a linear dynamic system subjected to various excitation. To determine the relationship between impact force and the corresponding response of dynamic system in residential building, the acceleration response of a concrete slab and the floor impact noise in the living room, produced by bang-machine and rubber-ball excitation, were measured. The test results are compared to the estimates based on FRF and impact force spectrum.

폐고무를 이용한 공공주택 층간소음차단 시스템 (Floor Noise Isolation System of the Residential Buildings Using Waste Rubbers)

  • 오정석;서재찬;김진국
    • 공업화학
    • /
    • 제28권4호
    • /
    • pp.427-431
    • /
    • 2017
  • 최근 공동주택이 증가함에 따라 층간소음문제가 증가하고 있다. 이로 인해 더 효과적인 층간소음저감 시스템이 요구되고 있다. 향후 고층빌딩이 더 많이 건설될 것이므로 이런 시스템은 시장에서 더욱 수요가 요구되어지는 중요한 기술이다. 본 연구에서는 폐고무를 이용하여 신규 바닥 소음 저감 판넬을 설계하고 제작하였다. 실험실 및 실제 필드조건에서 소음 저감을 조사하였다. Field test 결과 경량 및 중량충격음 레벨이 각각 52, 48 dB로 우수한 결과를 보였다. 기존 구조 대비하여 22~42 mm의 두께 저감을 할 수 있었다.

목탄을 이용한 친환경 건축자재 이용기술(II) - 목탄 함유 건축자재의 에너지 절감 및 차음 특성에 관한 연구 (Utilization of Charcoal as an Environmentally Friendly Building Materials (II) - A Study on the Energy Saving and Sound Insulation Characteristics of Building Materials Prepared with Charcoal -)

  • 안병준;백기현
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권1호
    • /
    • pp.41-52
    • /
    • 2011
  • 본 연구는 목탄을 첨가한 건축자재의 에너지 절감 및 차음특성을 조사하기 위하여 수행되었다. 건축자재 형태에 따른 특성을 조사하기 위하여 3동의 실험 건물을 신축하였다. 이들 실험 건물은 각각 일반건축자재(A), 목탄건축자재(B) 및 목탄 sericite 건축자재(C)를 사용하여 신축하였다. 건축자재 형태별 동절기의 보일러 난방 기름소모량을 조사한 결과, B를 사용할 경우 A를 사용한 건물과 비교하여 평균 9.5%, C를 사용할 경우에는 평균 14.9%의 기름절감 효과를 나타냈다. 특히 기름 절감효과는 외부기온이 낮을수록 큰 것으로 조사되었다. 또한 B를 적용한 건물은 A나 C를 사용한 건물과 비교하여, 난방온도가 상당히 완만하게 낮아졌으며, 보일러 가동 중단 12시간 경과 후 지상 1미터 공기부에서 $3.5{\sim}4.2^{\circ}C$, 바닥표면에서는 $4.4{\sim}5.4^{\circ}C$ 높게 나타났다. 건물 소음시험에 있어서는, 목탄을 포함하는 시험체는 다층건물의 층간소음 기준으로 대표되는 중량충격음과 경량충격음 모두에서 저감효과를 나타냈다.