• Title/Summary/Keyword: 중금속 이온

Search Result 580, Processing Time 0.026 seconds

Effect of Dye Wastewater on Heavy Metal Removal using Carboxylated Alginic Acid Bead (Carboxylated alginic acid bead를 이용한 중금속 제거에 대한 염료폐수의 영향 연구)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.74-80
    • /
    • 2009
  • Effect of dye wastewater on heavy metal removal using carboxylated alginic acid bead was performed. When carboxylated alginic acid bead was used as support, effect of dye wastewater on adsorption of $Pb^{2+}$ and $Cu^{2+}$ ions was very small. Also, when $Pb^{2+}$ was coexisted with dye wastewater, adsorption process was almost completed within 2-3 hrs and $Pb^{2+}$ ions (50 ppm) was almost removed with 0.3g of bead. This result means that carboxylated alginic acid bead has effective adsorbent for heavy metal removal in dye wastewater.

  • PDF

A Study on Heavy Metal Removal Using Alginic Acid (알긴산을 이용한 중금속 제거에 관한 연구)

  • Jeon, Choong;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.107-114
    • /
    • 2007
  • A study on the removal of heavy metals using alginic acid, a kind of polysaccharides, was performed. Alginic acid adsorbed 480 mg Pb/g dry mass at pH 4, which was about twice as high as uptake capacity of other biosorbents. Isothermal adsorption curve for lead ions was described by the Langmuir model equation and the experimental data well fitted to model equation. The adsorption of lead ions was an endothermic process since binding strength increased with temperature. The effect of alkali metal ions ($Ca^{2+}$ and $Mg^{2+}$) on lead sorption capacity was negligible and most adsorption process was completed in 30min. The uptake capacity of other metals such as, copper, mercury, strontium, and cesium ions using alginic acid was also investigated.

  • PDF

폐중석광산의 광미와 오염된 토양에 대한 중금속 존재형태 연구

  • 강민주;이평구;최상훈;신성천
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.299-301
    • /
    • 2003
  • 광미와 오염된 토양에 함유되어 있는 중금속 원소는 존재형태에 따라서 환경에 미치는 영향의 차이가 있다. 그러므로 중금속 원소의 존재형태를 규명하여 물리화학적 환경변화에 따른 중금속의 거동을 예측하고자 Tessier et al. (1979)의 방법을 이용하여 연속추출을 수행하였다. 청양광산과 서보광산의 광미를 비교하면, As와 Co는 두 광산 모두 잔류형태로 안정화되었다. Cd과 Zn은 서보광산의 광미가 청양광산의 광미보다 잔류형태가 더 우세하였다. Pb는 서보광산의 광미가 양이온교환형태로 존재하는 함량이 높고 청양광산의 광미도 양이온교환과 탄산염광물의 형태로 존재하는 함량이 높아 오염 확산의 우려가 있다. 서보광산의 오염된 토양의 경우, As, Co, Cd, Cu및 Zn는 대체로 안정한 형태였으나, Pb는 산화환경에서 불안정한 형태로 존재하였다.

  • PDF

Removal of Heavy Metals, Cd(II) and Pb(II) Ions in water by Sargassum Herneri (괭생이 모자반에 의한 수중 중금속 Cd(II), Pb(II) 이온의 제거)

  • Park, Kwang-Ha;Park, Mi-A;Jang, Hoon;Kim, Eun-Kyung;Kim, Young-Ha
    • Analytical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.196-202
    • /
    • 1999
  • Brown algae, Sargassum horneri, was used as an adsorbent to remove heavy metal Cd(II) and Pb(II) ions. Sargassum horneri picked in East Coast was formulated into the grain with the size of 40-60 mesh after wind dry. Batch method was used in order to investigate the adsorption rate by measuring the adsorption amounts with shaking time. In the column method, the adsorption amounts were measured by flowing metal solutions into the algae-packed column at the rate of 1 ml/min. Adsorption amounts in both batch method and column method were in the following order : pH 10.5>7.0>3.5. It was found that Pb(II) was more adsorbed on the algae grain than Cd(II). It was also revealed that the adsorption amounts reached the maximum within 5 minutes irrespective of pH condition in the batch method. It was concluded that the batch method was more effective than the column method in terms of recovery rate.

  • PDF

The Effect of pH on Citric Acid Leaching of Soil Contaminated with Heavy Metals (중금속(重金屬) 오염토양(汚染土壤)의 구산(枸酸) 침출(浸出)에 대한 pH의 영향(影響))

  • Jung, Kyungbae;Park, Hongki;Yoo, Kyoungkeun;Park, Jay Hyun;Choi, Ui Kyu
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.13-19
    • /
    • 2013
  • The effect of pH on the citrate leaching behavior of heavy metal ion was investigated to develop an eco-friendly process for removing heavy metals from soil contaminated with copper, zinc, and lead. The leaching tests were performed using citrate solution with pH adjusted by mixing citric acid and sodium citrate under the following leaching conditions: particle size, under $75{\mu}m$; temperature, $50^{\circ}C$; citrate concentration, $1kmol/m^3$; pulp density, 5%; shaking speed, 100 rpm; leaching time, 1 hour. The difference of pH before and after the leaching test was not observed, and this result indicates the direct effect of hydrogen ion concentration on the leaching of metals was insignificant. The removal ratios of copper, zinc, and lead from the contaminated soil decreased with increasing pH. The thermodynamic calculation suggests that the leaching behaviors of metal ions were determined by two reactions; one is the reaction to form complex ions between heavy metal ions and citrate ion species, and the other is the reaction to form metal hydroxide between heavy metal ions and hydroxide ion.

Stabilization Behavior of Heavy Metal ions by Treatment Conditions (처리조건에 따른 중금속 이온의 안정화 거동)

  • 엄태호;김유택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.583-588
    • /
    • 2003
  • Cation exchange capacity of clay, white clay and zeolite was measured by the adsorption test for 3 different heavy metal (Cd, Cr, Zn) standard solutions whose concentrations were varied by 10, 20, 30 ppm and pH were varied by 3, 5, 7, 9, respectively. The adsorption rate of Cd and Zn increased with increasing pH and slowly increased with increasing pH above pH 5. However, adsorption rate of Cr did not increase with increasing pH. Especially, Cr adsorption rate of the mixture of clay and white clay at pH 5 showed an half decrease compared to that at pH 3. The adsorption rate of mixed heavy metal solutions was in the order of Cd, Zn > Cr; however, the order was changed by Fe>Pb, Cu>Cr>Zn>Cd in case of Cu, Fe and Pb addition.

Precipitation Characteristics of Heavy Metal Ions in Coal Mine Drainage (석탄광산배수에 함유된 중금속 이온의 침전 특성)

  • Jo, Young-Do;Ahn, Ji-Whan;Kim, Hyung-Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.125-134
    • /
    • 2007
  • This study has been carried out in order to examine the precipitation characteristics of Fe, Mn and Al ions in coal mine drainage before removing heavy metals by using the froth flotation method. The removal rate of Fe(III), Mn(II) and Al(III) within 1 h accounted for over 99% in pH 5.0, 10.0, and $6.0{\sim}9.0$ respectively, and residual concentrations of which were under $1mgL^{-1}$. When sodium oleate as a collector was added to the solution of Fe, Mn, and Al ions, insoluble salts was not formed by the reaction of heavy metal and sodium oleate. So, we must remove the metals from coal mine drainage by using not the ion flotation method, but the precipitation flotation method

Study of Utilization of Natural Zeolites as Functional Materials for Water Purification (II): Adsorption Properties of Heavy Metal Ions by Domestic Zeolites (천연 제올라이트의 수환경 개선용 기능성 소재로의 활용에 관한 연구 (II): 국내산 제올라이트의 중금속 이온 흡착 특성)

    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.201-213
    • /
    • 2003
  • The adsorption property and ability of domestic zeolites for some heavy metal ions (Ag, Pb, Cr, Cu, Zn, Mn), which may cause a serious environmental problem in industrial wastewater, were evaluated on ore unit through a series of adsorption experiments together with careful examinations of mineral composition and properties of the zeolites. Though the adsorption behavior basically took place in the form of a cation exchange reaction, the higher CEC value does not necessarily to imply the higher adsorption capacity for a specific heavy metal. A general trend of the adsorption selectivity for heavy metals in the zeolites is determined to be as follow: $Ag\geq$Pb>Cr,Cu$\geq$Zn>Mn, but the adsorption properties of heavy metal ions somewhat depend on the species and composition of zeolite. Clinoptilolite tends to adsorb selectively Cu in case of Cr and Cu, whereas heulandite prefers Cr to Cu. A dominant adsorption selectivity of the zeolite ores for Ag and Pb is generally conspicuous regardless of their zeolite species and composition. The zeolite ores exhibit a preferential adsorption especially for $Ag^{+}$ so as not to regenerate when treated with $Na^{+}$ . In the adsorption capacity for heavy meta ions, the zeolites differ in great depending on their species: ferrierite>clinoptilolite>heulandite. Considering the CEC value of mordenite, the mordenite-rich ore appears to be similar to the clinoptilolite ore in the adsorption capacity. The adsorption capacity for heavy metals is not positively proportional to the CEC values of the zeolites measured by the exchange reaction with ammonium ion. In addition, the adsorption capacity roughly tends to depend on the zeolite contents, i.e., the grade of zeolite ore, but the trend is not consistent at all in some ores. These may be caused by the adsorption selectivity for some specific heavy metals, the presence of possible stacking micro-faults and natural cations such as K hardly to exchange in the zeolite. Considering the economic availability and functional effectiveness as natural zeolite resources, clinoptilolite ores could be applicable to utilize the domestic zeolites for the removal of heavy metals.

황토로부터 합성된 제올라이트를 이용한 흡착반응 연구

  • 홍정연;감상규
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2002.05b
    • /
    • pp.179-182
    • /
    • 2002
  • 기존의 적정 자료로부터 구하는 방법이 아닌 흡착제의 Zeta potential 자료를 바탕으로 구한 값으로도 흡착결과를 잘 모사할 수 있다. 합성 제올라이트의 중금속 이온 제거능은 합성 제올라이트의 종류에 따라서는 중금속 이온의 종류에 관계없이 Na-Pl > SOD > CAN > ANA의 순서로 감소하였다. SCM 모델링의 Fitting을 결정하는 Fitting 변수로서는 총 site 농도(g/$\ell$), site 밀도 (sites/$nm^2$), 비표면적 ($m^2$/g)으로써 결정할 수 있다.

  • PDF

서보광산의 폐광석 내 2차 산화광물의 중금속 고정화에 대한 광물학적 연구

  • 강민주;이평구;박성원
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.43-47
    • /
    • 2003
  • 산화환경에 노출된 폐광석에 포함되어 있는 황화광물은 산소와 물과의 화학반응을 통한 산화작용을 받게 되고 주변 환경에 유해한 금속원소의 용출이 발생될 것으로 예상된다. 그러나 용해된 금속이온은 침전(precipitation), 공침(coprecipitation), 흡착(adsorption)반응에 의해 수용액으로부터 제거되어 자연적으로 고정화될 수 있다. 이번 연구는 서보광산의 폐광석 내 용해된 중금속원소들의 이동을 제한하는 요인으로서 2차 산화광물의 침전 및 용해된 중금속 원소들의 흡착 가능성을 광물학적으로 연구하였다. (중략)

  • PDF