• Title/Summary/Keyword: 중금속 용출

Search Result 384, Processing Time 0.021 seconds

A Fundamental Study of Ferro Copper Slag for Concrete Aggregate (동슬래그의 콘크리트용 골재 활용에 관한 기본연구)

  • Song, Tae-Hyeob;Lee, Mun-Hwan;Lee, Sea-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • To use ferro copper slag as aggregate in the construction, an evaluation upon the two kinds of ferro copper slag being produced was conducted to determine the basic physical, and mechanical properties, chemical component and environmental noxiousness. As a result of experiment, it was found that two kinds of ferro copper slag satisfies the physical and mechanical properties of aggregate, prescribed in KS F 2526, and that in the result of noxious heavy metal eruption test by single bach extraction, no eruption of noxious heavy metal was detected or the eruption was far below the reference value. And mortar test was conducted by replacing sand of 25, 50, 75, 100% and the performance level was presented upon reviewing the fluidity property and variable aspects of unit weight. The increase of strength in accordance with replacement rate of sand was found to be the below than the equivalent level compared to the testing specimens that did not use ferro copper slag, but those of 25% replacement rate was above than 0%. Thus, two kinds of ferro copper slag, produced in the domestic, were found to be possessing the enough physical properties to use as concrete aggregate assuming that used with sand and in particular, it was reviewed to be advantageous in manufacturing concrete or mortar that requires weight.

Development of Porous Support with Mine Waste Materials (광산 폐기물을 활용한 다공성 담체 개발)

  • 정문영;정명채;최연왕
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.143-151
    • /
    • 2004
  • This study focused on examining the possibility of recycling mine solid waste as environmental materials, especially for porous media. Basic properties including mineralogical compositions, chemical compositions, and particle size distribution of the tailings from the Sangdong W mine were checked. The mineralogical and chemical compositions of the tailings samples were not much different in depth. According to Korean Standard Leaching Test for Wastes(KSLT), concentrations of heavy metals leached from the tailings were below the standard values. As a result of particle size analysis, the median diameter (d$_{50}$) of the tailings was in the range of 10 to 30 ${\mu}{\textrm}{m}$. The stable tailings slurry made up of 3 ${\mu}{\textrm}{m}$ in d$_{50}$ was prepared using Attrition Mill. The milling condition was 40 vol% in slurry concentration, 700 rpm in stirring speed, and 1 hour in milling time. PEI was added as dispersing agent. Concentrated slurry was extended to 3 times by foaming method. In the case of 3 times foamed slurry, the total and open porosity of ceramic supports sintered at 1,075$^{\circ}C$ for 90 minutes was about 80% and 72%, respectively. Pore size was in the range of 30∼350${\mu}{\textrm}{m}$. Therefore, the tailings could be recycled starting material for environmental materials such as macroporous ceramic support.

A Biogeochemical Study of Heavy Metal Leaching from Coal Fly Ash Disposed in Yeongdong Coal-Fired Power Plant (영동화력발전소에서 방출되는 석탄회로부터 박테리아 활동에 따른 생지화학적 연구)

  • Chung, Duk-Ho;Cho, Kyu-Seong;Park, Kyeong-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.2
    • /
    • pp.170-179
    • /
    • 2011
  • Fly ashes derived from coal fired power plants have unique chemical and mineralogical characteristics. The objective of this research was to study how indigenous bacteria affected heavy metal leaching in fly ash slurry during the fly ash-seawater interactions in the ash pond located in Yeongdong seashore, Korea. The in-situ pH of ash pond seawater was 6.3-8.5. For this study, three sites of the ash pond were chosen to collect a sample of fly ash slurry. Three samples that had a mix of fly ash (0.4 L) and seawater (1.6 L) were collected at each site. First sample was autoclaved ($120^{\circ}C$, 2.5 atm), second one was inoculated with glucose to stimulate the microbial activity, and the last sample was kept in the natural condition. Compared with other samples including autoclaved and natural samples, the glucose added sample showed sharp increase in its alkalinity after 15 days, cation concentration change such as Ca, Mg, and K seemed to increase in early stage, and then decrease 15 days later in slurry solution of glucose added sample, and a possibly considerable decrease in $SO_4^{2-}$ in the fly ash slurry samples when glucose was added to stimulate the microbial activity. Geochemical data of this study is likely to be related to the activity of bacteria at the ash pond. The result may be used to understand about the characteristic of bacteria.

Extraction of Minerals and Elimination Effect of Heavy Metals in Water by Korean Quartz Porphyry (한국산 맥반석의 미네랄 용출 및 중금속제거 효과)

  • Hwang, Jinbong;Yang, Miok;Kim, Mina;Park, Sunghoon
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.310-319
    • /
    • 1996
  • According to the element analysis of Korean Quartz Porphyry, the ignition loss related to porosity was 7.03, 3.36, 2.09 and 0.73% in the order of Suanbo, Yeachen, Angang and Kyongsan. Extraction of minerals in deionized water and elimination effect of heavy metals in water by Quartz Porphyry were examined. When the Quartz Porphyry of the Suanbo, Yeachen of 0.5~2.0% concentration and the Quartz Porphyry of the Angang of 1.5% concentration were immersed and stirred in deionized water for 3 hours at 180rpm, various minerals concentration of the all stirred water were suitable for potable water. But Quartz Porphyry of the Yeachen was not suitable for potable water because of excess extraction of iron. The elimination rate of lead in single solution was 99% by Quartz Porphyry of the Suanbo, Yeachen and Angang of 3% concentration, Cadmium by Quartz Porphyry of the Suanbo of 7% concentration was eliminated about 98% in 1 hour. The copper was significantly eliminated in Quartz Porphyry of low concentration. Especially in Quartz Porphyry of Angang at 0.4% concentration, the rate of ion exchange was 99% in 4 hours. But elimination effect of arsenic in water by Korean Quartz Porphyry was very low.

  • PDF

Application of Galvanic Oxidation and Pyrite Dissolution for Sustainable In-Situ Mine Tailings Treatment (갈바닉 산화와 황철석 용해를 이용한 친환경 원위치 광미 무해화 기술)

  • Ju, Won Jung;Jho, Eun Hea;Nam, Kyoungphile
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.279-284
    • /
    • 2016
  • Mine tailings generated during mining activity often contain high concentrations of heavy metals, with pyrite-containing mine tailings in particular being a major cause of environmental problems in mining areas. Chemical cell technology, or fuel cell technology, can be applied to leach heavy metals in pyrite-containing mine tailings. As pyrite dissolves through spontaneous oxidation (i.e. galvanic oxidation) in the anode compartment of the cell, $Fe^{3+}$, sulfuric acid are generated. A decrease in pH due to the generation of sulfuric acid allows heavy metals to be leached from pyrite-containing mine tailings. In this study, pyrite was dissolved for 4 weeks at $23^{\circ}C$ in an acidic solution (pH 2) and in a galvanic reactor, which induces galvanic oxidation, and total Fe leached from pyrite and pH were compared in order to investigate if galvanic oxidation can facilitate pyrite oxidation. The change in the pyrite surface was analyzed using a scanning electron microscope (SEM). Comparing the total Fe leached from the pyrite, there were 2.9 times more dissolution of pyrite in the galvanic reactor than in the acidic solution, and thus pH was lower in the galvanic reactor than in the acidic solution. Through SEM analysis of the pyrite that reacted in the galvanic reactor, linear-shaped cracks were observed on the surface of the pyrite. The study results show that pyrite dissolution was facilitated through the galvanic oxidation in the galvanic reactor, and also implied that the galvanic oxidation can be one remediation option for pyrite-containing mine tailings.

Properties Evaluation and flowability of Controlled Low Strength Materials Utilizing Industrial By-Products (산업부산물을 활용한 저강도 고유동 채움재의 유동성 및 물성평가)

  • Cho, Yong-Kwang;Kim, Chun-Sik;Nam, Seong-Young;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.64-69
    • /
    • 2018
  • The purpose of this study is to expand the use of coal ash and coal slag in thermal power plants. In addition, controlled low strength materials was developed to prevent mine settlement. Bottom ash and KR slag are mixed at ratio of 7:3 to expand the use of industrial by-products through carbonate reaction and inhibit the exudation of heavy metals. In order to efficiently fill the abandon mine, workability and physical properties were evaluated according to flow. As a result of elution of harmful substance experiment, it was confirmed that the carbonation reaction inhibited the elution of heavy metals. It was confirmed that the difference in water ratio was the difference in specific surface area of the controlled low strength materials. It was confirmed that the working efficiency is excellent when the flowability is 300mm compared to 260mm. compressive strength measurement result was relatively high at 260mm compared to 300mm because the number of pores due to decrease of water ratio was small.

A Experimental Study on the Ready-mixed Shotcrete Using Granulated Blast Furnace Slag (고로슬래그 미분말을 혼입한 레디믹스트 숏크리트의 현장적용성에 관한 실험적 연구)

  • Choi, Hee-Sup;Kim, Dong-Min;Jang, Pil-Sung;Seo, Sin-Seuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.31-45
    • /
    • 2009
  • The aim of this study is to evaluate the applicability of Granulated Blast Furnace Slag to the development of the Powdered Ready-mixed Shotcrete. First of all, after accomplishing SEM analysis and Leaching Test, the laboratory and field experiments for evaluating the utility of Granulated Blast Furnace Slag were performed. As a result of SEM and Leaching test, the environmental stability was confirmed. That is, non-detection of harmful lists and dense shotcrete structure result from mixing Granulated Blast Furnace Slag. As a result of lab. and field test, Blast Furnace Slag is superior to Plain Batch in improving strength and durability. And it will be able to improve to some extent the problem caused by the delayed reaction of existing Granulated Blast Furnace Slag with alkali activated material. Also the proper amount of Granulated Blast Furnace Slag is estimated to be under 30%. Finally, it is possible that Granulated Blast Furnace Slag can apply to economical recycling and development of the Ready-mixed Shotcrete for its price is only about 5% of Silica-finne's price.

Chemical Speciation of Heavy Metals in Geologic Environments on the Abandoned Jangpoong Cu Mine Area (장풍 폐광산 주변 지질환경에서 중금속의 존재형태)

  • Lee In-Gyeong;Lee Pyeong-Koo;Choi Sang-Hoon;Kim Ji-Soo;So Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.699-705
    • /
    • 2005
  • In order to identify the speciation of As and trace elements which are contained weathered waste rocks on the abandoned Jangpoong Cu mine area, five fraction sequential extraction was carried out. Concentrations of the extraction solutions which were acquaired each fraction were mesured by ICP-AES. Mineral characters of weathered waste rocks were determinated by XRD. The weathered waste rocks could divide into two types (Type I and type II). Type land type II weathered waste rocks are mainly composed of a quartz and a calcite, respectively. The most dominant speciation of As, Co and Fe is residual phase. Most of the speciation of Cd, Mn and Zn is residual phase for type I and Fe-Mn oxide phase for type II. In case of Cu, residual phase is predominant in type I and sulfide is predominet in type II. The most dominant speciation of Pb for type I and type II is associated with the residual phase and Fe-Mn oxide phase, respectively. At pH 4-7 range, the order of relative mobility considers Zn>Cu>Cd>Pb>Co>AS in type I, and Cd>Cu>Zn>Pb>As>Co in type II.

Effect of pH and Temperature on the Adsorption of Heavy Metals in Acid Mine Drainage (AMD) Onto Coal Mine Drainage Sludge (CMDS) (탄광슬러지를 이용한 금속광산 산성배수 처리 시 pH및 온도의 영향)

  • Cui, Ming-Can;Lim, Jung-Hyun;Kweon, Bo-Youn;Jang, Min;Shim, Yon-Sik;Khim, Jee-Hyeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • In this study, the effect of pH and temperature on the adsorption behavior of acid mine drainage (AMD) on coal mine drainage sludge (CMDS) has been investigated during the treatment of coal mine drainage (CMD) by electrical purification method. The pH$_{zero\;point\;charge}$ (pH$_{zpc}$) of CMDS was 5. The removal ratio of copper, zinc, cadmium, iron were increased according to the increase of pH value. The adsorption amount of copper showed 0.64 mg g$^{-1}$ sludge. It was independent of pH value. The adsorption amount of the other metals showed l.l times when pH was 3. The adsorption amount of chromium was a little bit increased at the pH value higher than 7 due to a small amount of the chromium was eluted as $Cr(OH)_6^{3-}$. The amount of metals' absorption were decreased according to temperature was increase at pH value was 3. The selectivity order was Cd>Fe > Zn > Cu. The amount of absorption showed q$_{max}$ Cu 2.747 mg g$^{-1}$ andZn 2.525 mg g$^{-1}$ when pH value higher than 5. It was independent of temperature.

Heavy Metals in Surface Sediments from Doam Bay, Southwestern Coast of Korea (한국 남서해안 도암만 표층퇴적물의 중금속 함량 및 분포 특성)

  • CHO, HYEONG-CHAN;CHO, YEONG-GIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.159-168
    • /
    • 2015
  • Forty-four surface sediments from Doam Bay were analyzed for total organic carbon (TOC), total nitrogen (TN), total metal (Al, Fe, Mn, Cr, Cu, Ni, Pb, Zn) and further chemical partitioning of metals were carried out in some samples. The TOC (0.32~3.10%) and TN (0.03~0.26%) values of the samples were similar to those of other coastal area. The C/N ratios ranged from 7.9 to 11.9 with an average 9.3 which revealed that contribution of terrestrial organic matters was relatively rare. Contents of analysed metals showed a level lower than threshold effects level (TEL) in sediment quality guidelines. Based on the chemical speciation of metals, the lattice fractions were found in the order Cr > Cu > Ni > Zn > Pb > Mn, while Mn and Pb are the ratio of the non-lattice fractions accounted for more than 50%. The average baseline values were obtained relative cumulative frequency curves and linear regression analysis. The respective baseline concentrations for Cu, Ni, Pb, Zn, Cr and Mn were 11.8, 23.1, 26.8, 76.6, 56.7, 585 mg/kg, respectively. Based on geoaccumulation index ($I_{geo}$) with a baseline values of Mn showed that face the contamination phase from estuarine stations. However, in case of Zn and Pb, although there is no sign of contamination, it could be release from sediment when there is a change in the environment, which is caused from the high ratio of non-lattice fractions.