• Title/Summary/Keyword: 중금속 용출

Search Result 384, Processing Time 0.027 seconds

Influences of pH on Heavy Metal Leaching in Water Supply Pipelines (상수도관내 중금속 용출에 대한 수소이온농도의 영향 평가 연구)

  • Lee, Jeongwon;Noh, Yoorae;Park, Joonhong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • In Korea, previous certification of water supply infrastructure was mainly focused on economical and physical aspects. Recently, hygienic safety of water supply service has become a sensitive and important issue to our people for evaluating the water quality with growth of economy and education system. According on water quality in 497 Korean water supply facilities, pH values in the supplied water have ranged between 5.8-8.5. However, little is known about metal leachability at the pH conditions observed in the real water supply systems because a fixed pH condition (pH 7.0) has been used in the current standard method, 'Hygienic Safety Testing Method', in water supply. In this work, we examined the effects on heavy metal leachability with pH differences in the water supply pipes which are typically used in Korea. As a result, the amounts of metal leachability were tended to increase when pH levels were decreased. Especially at pH 5.8, Cu leachability from Cu pipes was found to exceed the public health standard level even after applying a normalization factor (NF) given by the current Korea standard method. The Cr and Cu leached from stainless steel pipes, Cd, Pb, Cu, and Zn from Cu-based pipe fittings, and Zn from Zn-based pipe fittings were exceeded the Korean hygienic safety standards while, after applying the NF, concentrations of the leached metals were satisfied with the current Korean standard. The findings from this work provide implications on the needs of reforming the current hygienic safety standard methodology.

Experimental Studies on Dissolution Characteristics of a Heavy Metal(As) in Mining Waste (광산매립지에서 중금속(As)의 용출 특성에 관한 실험적 연구)

  • Han, Choon;Seo, Myoung-Jo;Yoon, Do-Young;Choi, Sang-Il;Lee, Hwa-Young;Kim, Sung-Kyu;Oh, Jong-Kee
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.55-63
    • /
    • 1998
  • This study investigates the contamination mechanism of soil by drainages including acid rains around mining waste sites, and suggests the quantitative methods of prevention against soil contaminations and its alternatives. For these purposes, the dissolution of arsenic in soils, which is one of toxic heavy metals, has been examined experimentally using the artificial acidic solution. Also, in order to prevent dissolution of arsenic by acid rain, the effects of limestone for the neutrality method on the soil were investigated. The arsenic in soil specimen was dissolved by strong acidic solution below pH1.0. The maximum amount of dissolved arsenic increased with decreasing pH value. Furthermore, it was found very effective to use limestones for the neutrality method. The neutralization of limestones in acidic solution was found to follow the equation of chemical reaction-controlling formulation in unreacted-core models.

  • PDF

Evaluation of Lead, Copper, Cadmium, and Mercury Species in the Leachate of Steel Making Slag by Seawater (해수에 의한 제강 슬래그의 납, 구리, 카드뮴 및 수은 화합물의 용출특성 평가)

  • Lee, Han-Kook;Lee, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.75-84
    • /
    • 2005
  • The aim of this study is to evaluate the leaching characteristics of lead, copper, cadmium, and mercury from steel making slag by seawater. To demonstrate the leaching characteristics of heavy metals from steel making slag by seawater, it was carried to various leaching tests such as regular leaching tests, liquid/sold(LS) leaching test and pH static test. From the leachability of $Pb^{+2},\;Cu^{+2},\;and\;Cd^{+2}$ from steel making slag in pH static test, it is distinguished between distilled water and seawater. With distilled water, it is very low between pH 7-8 and pH 11-12. On the other hands, with the seawater, its leaching is higher than that of distilled water. In particular, concentration of $Hg^{+2}$ leached from slag by seawater is lower than that of distilled water. Meanwhile, we found that the heavy metals from steel making slag would be dissolved and precipitated using geochemcial equilibrium program such as visual minteq. Lead and copper leached from steel making slag with seawater were dissolved nearly in the range of pH 11-12, but in the range of pH 7-10 those were precipitated about 90%. And cadmium leached from steel making slag with seawater were dissolved completely. On pH static test with distilled water, lead leached from steel making slag seemed to be similar to pH static test with seawater. However, copper and cadmium leached from steel making slag were dissolved. In general, the species of lead leached from steel making slag were formed mainly of $PbCl^+,\;PbSO_4$, the species of copper were formed mainly of $CuSO_4,\;CuCO_3$, the species of cadmium were formed mainly of $CdCl^+,\;CdSO_4$ due to being sorbed with the anions($Cl^-,\;CO_3^{-2},\;SO_4^{-2}$) of the seawater. Both pH static test with seawater and distilled water, it is not in the case of the mercury. Most of mercury leached from steel making slag was precipitated(SI=0). Because the decreasing of $Hg^{+2}$ concentrations depends ferociously on the variation of chloride($Cl^-$) existed in the seawater. $Hg^{+2}$ leached from steel making slag could be sorbed strongly with chloride($Cl^-$) compared of carbonate($CO_3^{-2}$) and sulfate($SO_4^{-2}$) in the seawater. On the basis of that result, we found that the species of mercury was formed of calomel($Hg_2Cl_2$) as one of finite solid. Due to forming a calomel($Hg_2Cl_2$) in the seawater, the stability of mercury species by steel making slag should be higher than those of lead, copper, and cadmium species. Regarding the results stated above, we postulated that the steel making slag could be recycled to sea aggregates due to being distinguishing leachability of heavy metals($Pb^{+2},\;Cu^{+2},\;Cd^{+2},\;and\;Hg^{+2}$) between leaching tests by distilled water and seawater.

Solidification of Hazardous Wastes from Electroplating Industry (도금공장 유해폐기물의 고형화에 관한 연구)

  • Shin, Hang Sik;Her, Nam Ryoung;Koo, Ja Kong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.89-98
    • /
    • 1988
  • This research evaluated factors on cement-based solidification process designed for hazardous sludge produced from electroplating industry. Four factors of sand/cement ratio, water/cement ratio, amount of wet sludge and amount of a precipitator, were investigated in terms of leachability and compressive strength of the solidified materials. Results of triplicate tests and statistical analysis indicated that sand/cement ratio(S/C) had the greatest effect on leaching of Cr(VI) from the solidified materials while water/cement ratio(W/C) on Zn and compressive strength. Cr(VI) was fixed better than Zn by portland cement. An experimental modeing was developed to estimate leached metal concentration and compressive strength at a given condition. Proper mixing criteria were also suggested for the use of the solidified mixture as construction materials. In solidification of 30g dry sludge, optimal condition was studied for S/C ratio, W/C ratio and the weight of precipitator which were 1, 1.5 and 1.075g respectively.

  • PDF

Leaching Characteristics of Foundry Sands When Used as Reactive Media in Permeable Reactive Barriers (반응벽체에 쓰인 주물사의 용출특성에 관한 연구)

  • ;Benson, Craig H
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.179-193
    • /
    • 2002
  • Waste foundry sands were tested to determine their leaching characteristics when used as reactive media in permeable reactive barriers (PRBs). Water leach tests and column leach tests were performed on twelve foundry sands and three reference materials such as Peerless iron, a local fill material, and torpedo sand. The latter three materials were tested to compare concentrations of heavy metals and anions found in other materials commonly placed below the groundwater table with those from the foundry sands. Results of water leach tests md total elemental analyses showed that all of the laundry sands are Category 2 materials per Section NR 538 of the Wisconsin Administrator Code. However, tests on Peerless iron, torpedo sand, and a typical fill material indicate that these materials, which are commonly placed below the groundwater table, also are Category 2 materials. Thus, using foundry sand as a PR3 medium should pose no greater risk than that imposed using conventional construction materials.

Determination of Heavy Metals in Sanitary Products of Women (여성용 위생용품의 유해중금속 분석)

  • Shin, Jeoung-Hwa;Lee, Kyu-Keon;Chung, Myung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.6
    • /
    • pp.853-859
    • /
    • 2009
  • Endometriosis becomes the most common cause of pelvic pain and infertility women. The cause of endometriosis has ever been entirely proven. However, an increased use of commercial feminine hygiene products such as tampons and sanitary napkins was considered one of the major affect. Harmful substances in feminine hygiene products was analyzed and evaluated. Samples of commercial products obtained from Korea, Japan, America, Germany, and China were analyzed for six hazardous inorganic elements (chromium, cobalt, nickel, copper, cadmium and lead). In the extractable heavy metals of napkins, Cr, Ni and Cu were found in all of the samples, while Cd was detected only in two samples. In the tampons, Cr, Ni and Cu were found in all of the samples. The presence of Co and Cd was not detected in all samples The concentrations of extractable heavy metals in the tampons were lower than those in the sanitary napkins. The content of extractable heavy metals in the sanitary products was compared with the criteria of the 100 $\ddot{O}KO$ TEX Standard. It was confirmed that the level of heavy metals in the sanitary products posed no serious risk to health, based on the human-ecological criteria defined by the 100 $\ddot{O}KO$ TEX Standard.

Leaching Characteristics of Arsenic and Heavy Metals and Stabilization Effects of Limestone and Steel Refining Slag in a Reducing Environment of Flooded Paddy Soil (담수된 논토양의 환원 환경에서 비소 및 중금속의 용출특성과 석회석 및 제강슬래그의 안정화 효과 검토)

  • Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun;Kim, Ha-Jin;Yu, Chan
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.251-263
    • /
    • 2011
  • In order to investigate treatment effects of limestone and steel refining slag for paddy soils contaminated with arsenic and heavy metals, a lab-column test was carried out under reducing environments of flooded paddy soils. In conditions of the flooded paddy soils, at the point of time when iron and manganese were reduced and leached rapidly, heavy metals also leached rapidly, and some leachate samples from an untreated soil exceeded regulatory standards. On the contrary, all samples from soils treated with limestone 5% and steel refining slag 5% respectively were below the regulatory standards, showing much lower heavy metal concentrations than in the untreated soil. Arsenic increased continuously during the observation period according to its typical characteristics, and along with decreasing redox potential, arsenic was expected to leach as $H_3AsO_3$-of form $A^{3+}$ with high mobility and strong toxicity. Limestone and steel refining slag showed high treatment effects against heavy metals present in soil and steel refining slag especially showed the high treatment effects against arsenic.

Investigation of the Rice Plant Transfer and the Leaching Characteristics of Copper and Lead for the Stabilization Process with a Pilot Scale Test (논토양 안정화 현장 실증 시험을 통한 납, 구리의 용출 저감 및 벼로의 식물전이 특성 규명)

  • Lee, Ha-Jung;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.255-264
    • /
    • 2012
  • The stabilization using limestone ($CaCO_3$) and steel making slag as the immobilization amendments for Cu and Pb contaminated farmland soils was investigated by batch tests, continuous column experiments and the pilot scale feasibility study with 4 testing grounds at the contaminated site. From the results of batch experiment, the amendment with the mixture of 3% of limestone and 2% of steel making slag reduced more than 85% of Cu and Pb compared with the soil without amendment. The acryl column (1 m in length and 15 cm in diameter) equipped with valves, tubes and a sprinkler was used for the continuous column experiments. Without the amendment, the Pb concentration of the leachate from the column maintained higher than 0.1 mg/L (groundwater tolerance limit). However, the amendment with 3% limestone and 2% steel making slag reduced more than 60% of Pb leaching concentration within 1 year and the Pb concentration of leachate maintained below 0.04 mg/L. For the testing ground without the amendment, the Pb and Cu concentrations of soil water after 60 days incubation were 0.38 mg/L and 0.69 mg/l, respectively, suggesting that the continuous leaching of Cu and Pb may occur from the site. For the testing ground amended with mixture of 3% of limestone + 2% of steel making slag, no water soluble Pb and Cu were detected after 20 days incubation. For all testing grounds, the ratio of Pb and Cu transfer to plant showed as following: root > leaves(including stem) > rice grain. The amendment with limestone and steel making slag reduced more than 75% Pb and Cu transfer to plant comparing with no amendment. The results of this study showed that the amendment with mixture of limestone and steel making slag decreases not only the leaching of heavy metals but also the plant transfer from the soil.

Heavy Metal Accumulation in Cell of Heavy Metal-Tolerant Bacteria by Some Physical and Chemical Treatments (물리화학적 전처리에 의한 중금속 내성세균의 균체내 중금속 축적 변화)

  • Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.311-319
    • /
    • 1997
  • Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri which possessed the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wasewaters polluted with various heavy metals. Metal binding sites in the cells were investigated by extracting the components of the cells through pretreatments with hot water, acid, alkli, chloroform-methanol or chloroform-methanol/concentrated alkali. The heavy metal accumulation was drastically decreased by pretreatment with alkali or chloroform-methanol/concentrated alkali, but the heavy metal accumulation was not changed by pretreatment with chloroform-methanol. The amount of heavy metal accumulation was remarkably decreased by decreasing crude protein remaining in the cell. These results suggested that proteins of cell components played an important role on the heavy metal accumulation.

  • PDF

Study on Water quality and Release Rate of Sediment in Gul-po Stream (굴포천 유역의 수질 및 퇴적물 용출 특성에 관한 연구)

  • Jung, Jae-Hoon;Ahn, Tae-Woong;Choi, I-Song;Oh, Jong-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.966-970
    • /
    • 2010
  • 본 연구의 대상지인 인천광역시, 부천시, 서울특별시, 김포시를 걸쳐서 흐르는 굴포천은 산업화와 도시화로 인한 생활하수 및 공장폐수의 유입, 느린 유속과 하천 복개 등과 같은 유입오염원과 하천 구조적 문제로 인하여 수질이 악화되어 왔다. 특히 하천변의 소규모 영세 공장, 중 상류에 형성된 대규모 공업단지, 지역개발에 따른 인구증가로 인한 생활하수 등은 굴포천의 주 오염원이다. 또한 직강화된 하도와 느린 유속 등 하천의 구조적인 문제점 등은 하천의 자정능력을 저하시키고 있어 현재 굴포천의 수질수준은 전국 최하위에 머물러 있다. 더욱이 입자상 오염물질의 퇴적으로 인하여 굴포천의 하상은 대부분 퇴적오니가 형성되어 있다. 이러한 퇴적오니는 다량의 유기 물질 및 중금속 등을 흡착하고 있고, 재용출에 의한 내부오염 가능성을 내포하고 있기 때문에 오염원이 제거된 후에도 계속적인 수질오염을 일으킬 수 있다(Alloway et al, 1988). 따라서 본 연구에서는 굴포천 본류 전 구간 및 유입지천에 대하여 수질 오염도와 오염부하량을 산정하였으며, 본류 하상 퇴적물의 오염도 및 퇴적물의 용출특성에 관한 조사를 수행하였다. 본 연구는 굴포천 본류 구간을 최상류(GP-1)부터 최하류(GP-7)구간까지 총 7개 구간으로 구분하여 실시하였으며 각 지점별 수질 및 퇴적물 오염도를 조사하였다. 또한 3개의 유입지천에 대하여 수질 오염도 및 오염부하량을 산정하였다. 굴포천 하상의 경우 최상류의 GP-1지점을 제외하고는 전 구간이 대부분 오염된 오니가 퇴적되어 있으며, 이러한 퇴적오니의 퇴적물 오염도를 분석해본 결과 상류부인 GP-1, GP-2와 유속이 비교적 빠른 GP-7지점에 비하여 나머지 지점들의 오염도가 매우 높은 것으로 나타났다. 이러한 하상퇴적물의 영양염류 용출특성을 알아보기 위하여 호기 및 혐기조건에서 용출실험을 실시한 결과 호기와 혐기 조건에서 T-N은 각각 34.84 $mg/m^2/day$, 66.93 $mg/m^2/day$의 용출속도를 보였고, T-P의 경우 호기 조건 시 5.33 $mg/m^2/day$, 혐기 조건 시 6.84 $mg/m^2/day$의 용출속도를 보임으로서 퇴적물 용출에 의한 내부오염의 가능성이 있음을 보였다.

  • PDF