• Title/Summary/Keyword: 중금속 오염도

Search Result 1,352, Processing Time 0.025 seconds

Exposure Assessments of Environmental Contaminants in Ansim Briquette Fuel Complex, Daegu(II) - Concentration distribution and exposure characteristics of TSP, PM10, PM2.5, and heavy metals - (대구 안심연료단지 환경오염물질 노출 평가(II) - TSP, PM10, PM2.5 및 중금속 농도분포 및 노출특성 -)

  • Jung, Jong-Hyeon;Phee, Young-Gyu;Lee, Jun-Jung;Oh, In-Bo;Shon, Byung-Hyun;Lee, Hyung-Don;Yoon, Mi-Ra;Kim, Geun-Bae;Yu, Seung-do;Min, Young-Sun;Lee, Kwan;Lim, Hyun-Sul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.380-391
    • /
    • 2015
  • Objectives: The objective of this study is to assess airborne particulate matter pollution and its effect on health of residents living near Ansim Briquette Fuel Complex and its vicinities. Also, this study measured and analyzed the concentration of TSP, $PM_{10}$, $PM_{2.5}$, and heavy metals which influences on the environmental and respiratory disease in Ansim Briquette Fuel Complex, Daegu, Korea. Methods: In this study, we analyzed various environmental pollutants such as particulate matter and heavy metals from Ansim Briquette Fuel Complex that adversely affected local residents's health. In particular, we verified the concentration distribution and characteristics of exposure for TSP, $PM_{10}$, and $PM_{2.5}$ among particulate matters, and heavy metals(Cd, Cr, Cu, Mn, Ni, Pb, Fe, Zn, and Mg). In that regard, the official test method on air pollution in Korea for analysis of particulate matter and heavy metal in atmosphere were conducted. The large capacity air sampling method by the official test method on air pollution in Korea were applied for sampling of heavy metals in atmosphere. In addition, we evaluated the concentration of seasonal environmental pollutants for each point of residence in Ansim Briquette Fuel Complex and surrounding area. The sampling measured periods for air pollutants were from August 11, 2013 to February 21, 2014. Furthermore, we measured and analyzed the seasonal concentrations(summer, autumn and winter). Results: The average concentration for TSP, $PM_{10}$, and $PM_{2.5}$ by direct influence area at Ansim Briquette Fuel Complex were 1.7, 1.4 and 1.9 times higher than reference region. In analysis results of seasonal concentrations for particulate matter in four direct influence and reference area, concentration levels for winter were generally somewhat higher than concentrations for summer and autumn. The average concentrations for Cd, Cr, Mn, Ni, Pb, Fe, and Zn in direct influence area at Ansim Briquette Fuel Complex were $0.0008{\pm}0.0004{\mu}g/Sm^3$, $0.0141{\pm}0.0163{\mu}g/Sm^3$, $0.0248{\pm}0.0059{\mu}g/Sm^3$, $0.0026{\pm}0.0011{\mu}g/Sm^3$, $0.0272{\pm}0.0084{\mu}g/Sm^3$, $0.4855{\pm}0.1862{\mu}g/Sm^3$, and $0.3068{\pm}0.0631{\mu}g/Sm^3$, respectively. In particularly, the average concentrations for Cd, Cr, Mn, Ni, Pb, Fe, and Zn in direct influence area at Ansim Briquette Fuel Complex were 1.9, 3.6, 2.1, 1.9, 1.4, 2.6, and 1.2 times higher than reference area, respectively. The continuous monitoring and management were required for some heavy metals such as Cr and Ni. Moreover, the average concentration in winter for particulate matter in direct influence area at Ansim Briquette Fuel Complex were generally higher than concentrations in summer and autumn. Also, average concentrations for TSP, $PM_{10}$, and $PM_{2.5}$ were from 1.5 to 2.0 times, 1.2 to 1.8 times, and 1.1 to 2.3 times higher than reference area, respectively. In results for seasonal atmospheric environment, TSP, $PM_{10}$, $PM_{2.5}$, and heavy metal concentrations in direct influence area were higher than reference area. Especially, the concentrations in C station were a high level in comparison with other area. Conclusions: In the results, some particulate matters and heavy metals were relatively high concentration, in order to understand the environmental pollution level and health effect in surrounding area at Ansim Briquette Fuel Complex. The concentration of some heavy metals emitted from direct influence area at Ansim Briquette Fuel Complex were relatively higher than reference area. In particular, average concentration for heavy metals in this study were higher than average concentrations in air quality monitoring station for heavy metal for 7 years in Deagu metropolitan region. Especially, the residents near Ansim Briquette Fuel Complex may be exposed to the pollutants(TSP, $PM_{10}$, $PM_{2.5}$, and heavy metals, etc) emitted from the factories in Ansim Briquette Fuel Complex.

Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials (골재 부산물의 용토재 활용을 위한 특성 분석)

  • Yang, Su-Chan;Jung, Yeong-Sang;Kim, Dong-Wook;Shim, Gyu-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.418-428
    • /
    • 2007
  • Physical and chemical properties of the aggregate by-products including sludge and crushed dust samples collected from the 21 private companies throughout the country were analyzed to evaluate possible usage of the by-products as artificial soil materials for plantation. The pH of the materials ranged from 8.0 to 11.0. The organic matter content was $2.85g\;kg^{-1}$, and the total nitrogen content and available phosphate content were low as 0.7 percents and $12.98mg\;kg^{-1}$, respectively. Exchangeable $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $Na^+$ were 2.29, 0.47, 0.02 and $0.05cmol\;kg^{-1}$, respectively. Heavy metal contents were lower than the limits regulated by environmental law of Korea. Textural analysis showed that most of the materials were silt loam with low water holding capacity ranged from 0.67 to 7.41 percents, and with low hydraulic conductivity ranged from 0.4 to $2.8m\;s^{-1}$. Mineralogical analysis showed that the aggregate by product materials were mostly composed of silicate, alumina and ferric oxides except calcium oxide dominant materials derived from limestones. The primary minerals were quartz, feldspars and dolomites derived from granite and granitic gneiss materials. Some samples derived from limestone material showed calcite and graphite together with the above minerals. According to the result, it can be concluded that the materials could be used as the artificial soil material for plantation after proper improvement of the physico-chemical properties and fertility.