• Title/Summary/Keyword: 중금속 및 비소

Search Result 239, Processing Time 0.027 seconds

pH변화에 따른 광미와 오염된 토양에 함유된 중금속 용출특성

  • 이평구;강민주;최상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.141-144
    • /
    • 2003
  • 청양 및 서보광산에서 채취한 광미 및 오염된 토양에 대한 산성비를 고려한 용출실험 결과, 아연, 카드뮴 및 망간 pH 6.2-5.8, 철 pH 5.2-3.2, 코발트 pH 4.4-3.2, 구리 pH 3.2-3.0, 납과비소 pH3.0-3.5의 용출조건에서 최초로 각 원소의 용출이 발생하였다. 반응용액의 최종 pH5.0-1.5사이에서 용출되는 중금속은 이온교환형태 및 탄산염광물형태와 수반된 것이 용해된 것이다. 반응용액의 최종 pH1.5이하에서 용출되는 중금속은 철과 밀접하게 수반된 것으로 해석되었다. 청양광산과 서보광산의 광미가 pH2.0이하로 유지되는 경우가 발생한다면, 청양광산은 비소(최대 6,006$\mu\textrm{g}$/g), 아연(최대 2,503$\mu\textrm{g}$/g) 및 납(최대 29,638$\mu\textrm{g}$/g), 서보광산은 납(최대 2,258$\mu\textrm{g}$/g)과 111소(최대 874$\mu\textrm{g}$/g)의 오염확산이 크게 우려되며, 이 결과는 광미에 대한 환경복원이 필요한 것을 지시한다. 서보광산의 오염된 토양은 pH3.0까지의 산성비와 반응하는 경우에는 중금속의 오염확산이 거의 우려되지 않으며, pH3.0이하의 강산 용액과 반응한다면 아연의 오염확산이 우려된다.

  • PDF

Modeling of risk assessment and remedial goal around closed metal mining areas

  • Ko, Il-Won;Lee, Cheol-Hyo;Kim, Ju-Young;Lee, Kwang-Pyo;Kim, Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.330-333
    • /
    • 2004
  • 국내 폐금속광산 일대에서 비소 및 중금속의 발암 및 비발암 위해성을 근거로 복원 기준치를 설정하였다. 폐금속광산일대의 주요한 노출 경로는 부지내 폐광석과 광미로부터 직접적인 오염물 흡입과 지하수를 통한 부지내 및 외 섭취의 경로로 구분된다. 지하수의 오염원은 폐광석과 광미 침출로부터의 오염과 갱구 유출로부터의 오염 및 지질매체 자체에 의한 오염이 설정되었다. 높은 오염 수준에 대해서 높은 오염성분감소비와 폐광산일대의 다양한 배경농도로부터 복원기준치를 설정 했을때, 토양 및 지하수의 복원기준치는 비소 위해도의 영향이 매우 큰 것으로 평가되었다. 비소의 높은 독성은 복원 기준치를 매우 낮게 형성했고, 위해도가 낮은 아연과 카드늄은 높게 설정되었다. 궁극적으로 오염성분 감소비에 따른 복원기준치 설정은 오염성분의 노출 경로 차단이 복원 목표치를 현실화시킬 수 있음을 보여주었다.

  • PDF

Effect of Sludge Digestion on Removal Efficiency of Heavy Metals from Sewage Sludge Using Thiobacillus thiooxidans MET (Thiobacillus thiooxidans MET를 이용한 중금속 제거 효율에 미치는 슬러지 성상의 영향)

  • 임설희;이소은;이인숙;조경숙;류희욱
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.389-397
    • /
    • 2001
  • The effect of sludge digestion on the leaching efficiency of heavy metals from sludge by bioleaching with Thiobacillus thiooxidans MET was investigated. The used sludges were a non- and anaerobically digested. The leaching efficiency of heavy metals was strongly dependent on the pH of the sludge solution rather than the sludge condition and stolid concentration. The lower the pH the more heavy metal was leached from 3.0 of pH. The sequent orders of leaching heavy metals were Zn, Cu, and Cr. Although the buffering capacity of non-digested sludge was similar to anaerobically digested sludge, the pH decrease rate of the anaerobically digested sludge solution was faster than that of the non-digested sludge solution due to the higher sulfur oxidation rate of T. thiooxidans MET in the anaerobically digested sludge. The amount of leached heavy metals from the anaerobically digested sludge showed higher than that of non-digested sludge at the same pH value. This result might be caused by the difference of the insoluble metal types, which were contained in the sludge. An increase in sludge solids concentration decreased the leaching efficiency of heavy metals in the range of solids concentration 10 g/L to 70 g/L. The optimum ratio of S° to sludge stolid was 0.1 in both the sludge. The bioleaching process of heavy metals with T. thiooxidans MET showed the disinfecting effect over 90% as well as the reduction effect in sludge weight of 20%.

  • PDF

The Characteristics of Heavy Metal Contamination in Tailings and Soils in the Vicinity of the Palbong Mine, Korea (팔봉광산 선광광미와 주변토양의 중금속 오염 특성)

  • 이영엽;정재일;권영호
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.271-281
    • /
    • 2001
  • The characteristics of the heavy metal contamination in the soils affected by the tailings of the Palbong mine have been studied. The soils in the studied area consist mostly of loam by the particle size analysis, but a little of it, located near the stream, consist of loamy sand to sandy loam, finally to loam downward. The organic contents of soils are significantly low aoom 2 percent and the pH is in acidic ranging 6.0 $\pm$ 0.1. The samples of the parent rocks, the normal soils, the tailings and the channel deposits from the studied area were chemically analysed. From the result, the heavy metal concenlration of the soils is a little Jow compared with that of the parent rocks, shows the hydrologic process of the surface and the groundwater. The contamination of the tailings from the ore mining are high in lead, copper and arsenic. In the channel deposits the concenlrations of lead and copper are abnormally high but that of arsenic is uniquely low. And most of heavy metal contamination are decreased with the distance from the mine. It is caused by the properties of the surface and the ground water during the process of the heavy metal migration. The correlation-coefficient between sand and silt contents and the concentrations of Cd, Cu and Pb are significant but the amounts of As and Hg are increased with the clay contents. The dispersion of the heavy metals with the distance shows that the concentrations of them in the soils sampled at distance of 100 m to 200 m along the stream started near the Palbong mine are extremely high compared with those from other distances. These discrepancies are significant in Cd, Cu, Pb and Hg, but low in As. All the samples contain below detection limit of Cr+6 In the present stream water the concentrations of the heavy metals are not detected. So, it is interpreted that the concentrations in the soils are caused by the activities of the mining during the operation and have been continued by the dispersion from the tailings since after the closure of the mining, especially by the surface and ground water. The concentrations are diminished with the distance from the mining site, but in the interval of 800-2000 m increases abruptly. In the soil samples counted on the dispersion direction by wind, the lowering of the concentration is relatively uniform with the distance from the mining site. So, the rapid increase of the heavy metal concentrations is presumed to have been caused by the ground-water movement. In the migration of the heavy metals, the groundwater conditions, such as pH, Eh, the contents of colloidal particles, and Mn and Fe oxides are closely involveo. Integrating with these factors, it is interpreted that the groundwater conditions which have caused the heavy metal contamination of the studied area are those that the pH is about 3 in oxidized conditions, the contents of the colloidal particles are low, and Mn and Fe oxides are not involved in the migration of the heavy metals. Meanwhile, the vegetables growing on the soils in the studied area are not affected by the contamination of the heavy metals.

  • PDF

Distribution Characteristics of Hazardous Heavy Metals in Ginseng and Wood-cultivated Ginseng (인삼 및 산양삼의 부위별 유해중금속 분포 특성)

  • Yang, Seung-Hyun;Lee, Tae-Woo;Lee, Jae-In;Choi, Hoon
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.4
    • /
    • pp.325-333
    • /
    • 2019
  • The present study was carried out to identify the distribution characteristics of heavy metals in ginseng and wood-cultivated ginseng reduction of dietary exposure. Samples of ginseng and wood-cultivated ginseng were collected from 14 and 5 regions across Korea, respectively. Lead (Pb), cadmium (Cd) and arsenic (Ar) were detected by ICP-MS after microwave digestion, whereas aluminum (Al) was determined using ICP. Cultivated ginseng peels were 16.2% of whole root, while the peels and fine roots amounted to 21.8% and 16.8% of whole wood-cultivated ginseng, respectively. Taking into account the weight and concentration of the heavy metals by root part, their distribution ratios were calculated and compared. The cultivated ginseng peels contained 40.3% Pb, 25.9% Cd, 47.6% As, and 89.9% Al. Meanwhile, heavy metals consisting of 27.2% Pb, 28.2% Cd, 48.3% As, and 56.8% Al were distributed in the peels of the wood-cultivated ginseng. There was no significant difference between the peels and fine roots of the wood-cultivated ginseng with respect to the distribution proportion of heavy metals, except for Al. These results indicate that the level of dietary exposure to heavy metals could be reduced by peeling ginseng and wood-cultivated ginseng prior to consumption.

Transfer Factor of Heavy Metals from Agricultural Soil to Agricultural Products (농작물 재배지 토양 내 비소, 납 및 카드뮴의 농산물로의 전이계수 산출)

  • Kim, Ji-Young;Lee, Ji-Ho;Kunhikrishnan, Anitha;Kang, Dae-Won;Kim, Min-Ji;Yoo, Ji-Hyock;Kim, Doo Ho;Lee, Young-Ja;Kim, Won Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.300-307
    • /
    • 2012
  • BACKGROUND: The Transfer Factor (TF) of heavy metals from soil to plant is important, because TF is an indicator of heavy metal in soils and a factor that quantifies bioavailability of heavy metals to agricultural products. This study was conducted to investigate the transfer ability of Arsenic (As), Cadmium (Cd), and Lead (Pb) from soil to agricultural products. METHODS AND RESULTS: We investigated heavy metals (As, Cd and Pb) concentrations in 9 agricultural products (rice, barely, corn, pulse, lettuce, pumpkin, apple, pear, tangerin) and soil. TF of agricultural products was evaluated based on total and HCl-extractable soil concentration of As, Cd, and Pb. Regression analysis was used to predict the relationship of total and HCl-extractable concentration with agricultural product contents of As, Cd, and Pb. The result showed that TF was investigated average 0.006~0.309 (As), 0.002~6.185 (Cd), 0.003~0.602 (Pb). The mean TF value was the highest as rice 0.309 in As, lettuce 6.185, pear 0.717, rice 0.308 in Cd, lettuce 0.602, pumpkin 0.536 in Pb which were dependent on the vegetable species and cereal is showed higher than fruit-vegetables in As. CONCLUSION(S): Soil HCl-extractable concentration of As, Cd, and Pb had the larger effects on thier contents in agricultural products than total soil concentrations. We suggests that TF are served as influential factor on the prediction of uptake. Further study for uptake and accumulation mechanism of toxic metals by agricultural products will be required to assess the human health risk and need TF of more agricultural products.

비소 및 중금속으로 오염된 토양복원을 위한 안정화 공법 칼럼 실험

  • Lee Ye-Seon;Kim In-Su;Lee Min-Hui
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.167-170
    • /
    • 2005
  • 대부분의 폐광산 주변 농경지 토양은 비소 및 여러 중금속으로 오염되어 있으며, 이러한 중금속들의 지속적인 용출에 의해 주변 지하수 오염과 재배 농산물의 중금속 축적이 우려되고 있다. 오염토양에서의 중금속 용출에 의한 오염을 막기 위하여 본 연구에서는 개량제를 이용한 안정화 공법을 선택하여 하부로 배출되는 중금속의 용출율을 감소시키는 실험을 실시하였다. 생석회(CaO)를 개량제로 이용하여 실제 오염 농경지 현장과 비슷한 대형칼럼을 제작한 후 인공강우를 주입, 하부로 용출되는 중금속의 농도를 측정함으로써 생석회 첨가에 의한 용출율 감소를 규명하였다. 개량제를 비오염토와 혼합하여 오염토양 상부에 복토한 것과 오염토와 혼합하여 객토한 칼럼을 각각 제작하였으며 투입되는 생석회의 양도 $2{\sim}10%$로 다양하게 적용 하였고, 첨가된 개량제의 성상도 분말과 입상으로 나누어 실험하였다. 주입하는 인공강우는 연구지역 주변의 10년간의 연 평균 강수량을 토대로 산정하였으며, 복토와 객토를 하지 않은 오염토양도 같은 조건에서 용출을 실시하였다. 실험결과 생석회의 성상에 따른 중금속 용출율의 차이는 없었으며, 개량제 함량은 5%가 적당한 것으로 나타났다. 복토와 객토를 비교하였을 때 용출되는 중금속의 농도는 객토가 복토에 비해 낮아 중금속 용출율 감소효과가 매우 큰 것으로 나타났으며, 중금속의 종류에 따라 용출율 감소의 차이를 나타내었다. 복토법의 경우 As의 용출율은 분말 생석회를 5% 복토한 경우 용출율이 10배 감소하고 Cd의 경우 2%와 5% 복토한 경우 각각 25배와 161배 감소하는 것으로 나타났다. Pb의 경우 생석회로 5%로 복토한 경우 10배정도의 용출율 감소를 보였고 Zn의 용출율은 분말, 입상 생석회를 5% 복토한 경우 80배$\sim$155배 감소하는 것으로 나타났다. 객토법의 경우 입상생석회를 5% 복토한 경우 Cd과 Zn 각각 200배에서 400배의 용출율 감소를 나타내었다.

  • PDF

Leaching Behavior of Heavy Metals from an Ore Containing High Concentration as Utilizing Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans (Acidithiobacillus ferrooxidans와 Acidithiobacillus thiooxidans를 활용한 고농도 비소 함유 광석 내 중금속 용출 거동 연구)

  • Kim, Gahee;Kim, Rina;Kim, Kwanho;You, Kwang-suk
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.14-23
    • /
    • 2021
  • To investigate the potential for leaching of heavy metals by bacteria from ores stacked on actual mining sites, leaching tests of a complex metallic ore (Pb-Zn-As ore) were conducted over 60 days using acidophile bacteria Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans under initial acidic conditions. Initially, a small amount of heavy metals was leached due to the initial acidic conditions. After 20 days, when A. thiooxidans in the reactor was adapted to the ore, the amount of leached heavy metals rapidly increased; the concentrations of leached arsenic, iron, and zinc reached a maximum of 2800, 3700, and 2500 mg/L, respectively. On the other hand, in the presence of A. ferrooxidans or in the control test without bacteria, heavy metals, except zinc, were barely detected in leaching. Through this study, it was confirmed that (i) bacteria could leach heavy metals at mining sites under acidic conditions and (ii) leaching of heavy metals from a high arsenic-containing ore by A. thiooxidans was more significant than that by A. ferrooxidans.

비소 오염 토양, 하천 퇴적물 및 광미의 복원을 위한 토양 세척 공정 개발에 대한 연구

  • 고일원;이광표;이철효;김경웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.318-321
    • /
    • 2003
  • 비소로 오염된 토양, 하천 퇴적물 및 광미의 복원할 때, 토양 세척 공정에서 중요한 인자인 비소의 화학적 결합형태와 세척제에 따른 용출특성과 고효율 세척 및 세척액의 재활용도를 높이기 위한 공정을 바탕으로 토양세척장비를 설계하였다. 화학적 결합형태에 있어서 토양은 잔류 결합형태가 주되고, 퇴적물의 경우는 철산화물과의 결합형태가 강하며, 광미는 황화물과의 결합에 따른 잔류형태와 철산화물과의 결합형태가 상당부분을 차지한다. 세척제에 따른 용출특성으로부터, 철산화물과 황화물과 결합하고 있는 비소의 화학적 결합형태를 파괴하면서 비소를 추출할 수 있는 용제로 HCl, Oxalate, EDTA, M$_2$O$_2$를 사용하였다. 추출 결과, 비소가 철산화물과 결합한 형태가 비중이 높을수록 EDTA 나 Oxalate가 효율이 높으며, 황화물에 대해서는 HCl과 $H_2O$$_2$이 상대적으로 높은 추출 효율을 보였다. 구성된 세척조는 밀폐실린더형과 스크류이송형 세척조로 구성되어 각각 혼합교반에 의한 세척과 토양입자 분급에 따른 세척이 가능하다. 세척 공정중 최적 산도 조절이 중요한 인자가 되며, 세척액의 재활용도를 높일때, 세척수에 용해되어 있는 비소 및 중금속과 미립자의 동시 제거를 위한 응집 침전조에서 응집제에 의해서 미립자와 함께 제거하는 응집, 침전 및 분리공정을 배치하였다.

  • PDF

The Content and Risk Assessment of Heavy Metals in Herbal Pills (유통 환제의 유해 중금속 함량 및 위해도 평가)

  • Lee, Sung-Deuk;Lee, Young-Ki;Kim, Moo-Sang;Park, Seok-Ki;Kim, Yeon-Sun;Chae, Young-Zoo
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.375-387
    • /
    • 2012
  • The objective of this study is investigation of contamination levels and assessment of health risk effects of heavy metals in herbal pills. 31 Items and 93 samples were obtained for this investigation from major herbal medicine producing areas, herbal markets and on-line supermarkets from Jan to Jun in 2010. Inductively coupled plasma mass spectrometer method was conducted for the quantitative analysis of Pb, Cd and As. In addition, the mercury analyzer system was conducted for that of Hg without sample digestion. The average contents of heavy metals in samples were as follows : 0.87 mg/kg for Pb, 0.08 mg/kg for Cd, 2.87 mg/kg for As and 0.16 mg/kg for Hg, respectively. In addition, the average contents of heavy metals in different parts of plants, including cortex, fructus, herba, radix, seed, algae and others were 0.63 mg/kg, 3.94 mg/kg, 1.42 mg/kg, 1.05 mg/kg, 0.16 mg/kg, 22.31 mg/kg and 10.17 mg/kg, respectively. After the estimations of dietary exposure, the acceptable daily intake (ADI), the average daily dose (ADD), the provisional tolerable weekly intake (PTWI) and the relative hazard of heavy metals were evaluated. As the results, the relative hazards compared to PTWI in samples were below the recommended standard of JECFA as Pb 3.1%, Cd 0.9%, Hg 0.5%. Cancer risks through slope factor (SF) by Ministry of Environment Republic Korea and Environmental Protection Agency was $4.24{\times}10^{-7}$ for Pb and $3.38{\times}10^{-4}$ for As (assuming that the total arsenic content was equal to the inorganic arsenic). Based on our results, possible Pb-induced cancer risks in herbal pills according to parts used including cortex, fructus, herba, radix, seed, algae and others were $1.95{\times}10^{-7}$, $1.45{\times}10^{-6}$, $2.14{\times}10^{-7}$, $6.27{\times}10^{-7}$, $1.99{\times}10^{-8}$, $3.61{\times}10^{-7}$ and $9.64{\times}10^{-8}$, respectively. Possible As-induced cancer risks in herbal pills by parts used including cortex, fructus, herba, radix, seed, algae and others were $1.54{\times}10^{-5}$, $7.24{\times}10^{-5}$, $1.23{\times}10^{-4}$, $2.02{\times}10^{-5}$, $3.25{\times}10^{-6}$, $2.18{\times}10^{-3}$ and $5.67{\times}10^{-6}$ respectively. Taken together, these results indicate that the majority of samples except for some samples with relative high contents of heavy metals were safe.