• Title/Summary/Keyword: 중금속용출시험

Search Result 115, Processing Time 0.027 seconds

A study on the ecological lightweight aggregates made of bottom ashes and dredged soils (저회 및 준설토를 이용한 에코인공경량골재의 제조에 관한 연구)

  • Jeon, Hye-Jin;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.133-137
    • /
    • 2007
  • Ecological lightweight aggregates were made in order to recycle the dredged soils from the seaside construction area and the bottom ashes from the power plant. Various physical and chemical analysis were performed on them to identify their possibility for applying lightweight concrete fields. Lightweight aggregates were made of bottom ashes and dredged soils from Yongheung Island which is located 20km west away from Seoul, and all the raw materials were milled before mixing. The physical and chemical properties such as density, absorption rate, stability, alkali latency reaction, heavy metal leaching of the lightweight aggregates were tested and analysed by following the KS standard procedures. From the size analysis, the coarse aggregates showed a suitable fit on standard particle ranges; however, the fine aggregates showed a large deviation from the standard. The absorption rates were increased with decreasing weight of the aggregates. All the aggregates were turned out to be safe by the stability and heavy metal leaching test; however, some of the aggregates were confirmed on the border of harmless and possibly harmful region through the alkali latency reactivity test.

Assessment of Soil Stabilization forthe Reduction of Environmental Risk of Lead-contaminated Soil Near a Smelter Site (제련소 주변 납 오염 현장토양의 위해성 저감을 위한 토양 안정화 평가)

  • Yeo, In-Hong;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.215-224
    • /
    • 2021
  • In this study, to investigate the effect of stabilization of Pb-contaminated soil near a smelter site for the reduction of environmental risk of Pb leaching, commercial stabilizers were amended with the Pb-contaminated soil and evaluated leaching characteristics of Pb in soil by TCLP and SPLP leaching test. Also, performing sequential extraction procedure speciation of Pb in the amended soil was investigated. Limestone, AC-2 (Amron), Metafix (Peroxychem) that possess stabilization performance towards heavy metal in soil and mass production is available were selected as candidates. AC-2 contained a CaCO3 and MgO crystalline phase, while Metafix had a Fe7S8 crystalline phase, according to XRD studies. Pb content in SPLP extract was lower than the South Korean drinking water standard for Pb in groundwater at 4% AC-2 and Metafix treatment soil, and TCLP-based stabilization effectiveness was more than 90%. The findings of the sequential extraction method of soil treated with Metafix revealed that fractions 1 and 2 of Pb, which correspond to relatively high mobility and bioavailable fractions, were lowered, while the residual fraction (fraction 5) was raised. As a consequence, the order of performance for Pb stabilization in polluted soil was Metafix>AC-2>limestone.

Potential Contamination of Soil and Groundwater from the Residual Mine Tailings in the Restored Abandoned Mine Area : Shihung Mine Area (페광산 복구지역 잔류장미로 인한 주변 지하수${\cdot}$토양 오염가능성-시흥광산 사례)

  • 정예진;이상훈
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.461-470
    • /
    • 2001
  • The Shihung mine was restored in the early 90's after abandonment for 20 yews since 1973. Although disposed mine tailings were removed and the site was replaced by an incineration plant, still some residual mine tailings remain in the places including the old mine tailing ditposal area and the adjacent agricultural area. These residual mine tailings are prone to impose an adverse impact on the soil and groundwater and needs investigation for the potential contamination. Mine tailing samples were collected from the old tailing disposal area and the iii paddy. The porewater from the mine tailing were extracted and analysed to investigate chemical changes along the reaction path. Batch leaching tests were also carried out in the laboratory to find any supporting evidence found in the field analysis. Evidence of elemental leaching was confirmed both by the mine tailing and the porewater chemistry in them. The element concentrations of Cu, Cd, Pb, Zn in the porewater exceed the standard for drinking water of Korean government and US EPA. Leaching of heavy metals from the mine tailing seem to be responsible for the contamination. In batch leaching test. heavy metals were either continuous1y released or declined rapidly. Combining the information with porewater variation with depths and the geochemical meodeling results, most of elements are controlled by dissolution and/or precipitation processes, with some solubility controlling solid phases (Cu, Pb, Fe and Zn). Batch leaching test conducted at fixed pH 4 showed much higher releases for the heavy metals up to 400 times (Zn) and this area is becoming more vulnerable to soil and groundwater pollution as precipitation pH shifts to acidic condition.

  • PDF

Development of Reinforcement Grout Materials Using Blast Furnace Slag Powder and Aramid Fiber (고로슬래그 미분말과 아라미드 섬유를 이용한 보강그라우트재 개발)

  • Seo, Hyeok;Park, Kyung-Ho;Kim, Chan-Jung;Kim, Ho-Chul;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.67-77
    • /
    • 2019
  • The grouting method is utilized to reinforce and waterproof poor grounds, enhance the bearing capacity of structures damaged resulting from settlement due to elevation and vibration or differential settlement, and for cutoff. The purpose of this research is to enhance the compressive strength of grout materials by using aramid fiber and develop a high-strength ground improvement method by using blast furnace slag powder. In this regard, this study has conducted a uniaxial compression test after checking the high charge (higher than 50%) of the ratio of blast furnace slag powder and cement at 100:0, 70:30 and 40:60%, adding the aramid mixture based on 0, 0.5 and 1.0% of the cement and furnace slag powder weight and creating sand gels based on surface oiling rate of 0.7 and 1.2%. For the environmental review evaluation, a heavy metal exudation test and a pH test measurement have been conducted. The experiment results showed that 1% increase of aramid fiber led to 1.3 times greater uniaxial compression intensity. As for the hexavalent chrome, a 30% increase in blast furnace slag powder led to approximately 50% decrease in heavy metal exudation. However, the pH test revealed that a 30% increase in blast furnace slag powder resulted in approximately 0.5 increase in pH. Further research on the pH part is needed in the future.

Study on the Hazardous Heavy Metals from Porcelain Dinnerwares (주방용 도자기에서의 유해중금속 용출에 관한 조사연구)

  • 이광호;권기성;전대훈;정동윤;최병희;이선희;이철원
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.4
    • /
    • pp.324-327
    • /
    • 2000
  • The analysis of hazardous heavy metals, such as Pb, Cd and As, was conducted from the porcelain dinnerwares. Total 374 samples of those products in the domestic market were purchased for the study. All the samples were extracted by 4% acetic acid solution, followed by the analysis with AAS(Atomic Absorption Spectroscopy). As a result, Pb and As were detected maximum 8.63$\mu\textrm{g}$/ml, 2.58 ng/ml, respectively. Cd was fecund in a sample as 0.10$\mu\textrm{g}$/ml.

  • PDF

The Injection Characteristics and Environmental Effects for Grouting Materials (지반주입재 종류별 주입특성 및 환경적 유해성에 관한 연구)

  • Chun, Byung-Sik;Lee, Jae-Young;Ha, Kwang-Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.37-49
    • /
    • 2002
  • In this study, it is performed that mix design of grouting materials which high strength, durability and environmentally safe materials for 2 types of suspension, solution grouting. The laboratory model tests such as permeation, solidification tests are performed to find injection effects by the injection pressure, soil condition. And environmental effects of the grouting materials is analyzed through the heavy-metal leaching tests. From the results, micro cement of suspension grouting superior permeation, solidification injection to Portland cement, and phosphoric acid and sodium hydrogen carbonate in solution grouting were similar to micro cement of suspension grouting. When compare to strength of grouted soils, micro cement of suspension grouting showed high compression strength to Portland cement. While, solution grouting showed very low compression strength comparing suspension grouting. Also, in the heavy-metal leaching tests results were satisfied with the environmental regulation standard for raw grouting materials and grouted soil by 7, 14, 28days curing.

  • PDF

Fuel Production Using Sewage Sludge and the Utilization of Co-Firing Fuel in Coal-Fired Power Plant (하수슬러지 연료화 및 발전소 혼소기술)

  • Yoon, Hyungchul;Cho, Sangsoon;Kang, Sukju;Kim, Jinhoon;Kim, Kyongtae;Ko, Daekwun;Lee, Sihun;Han, Gwangchun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.185.2-185.2
    • /
    • 2011
  • 1900년대 이후 산업발전에 따른 인구의 도시 집중화로 인한 하수량 증가에 따라 하수슬러지 발생량이 점차 증가하게 되면서 하수슬러지 처리에 관한 문제 등이 제기되기 시작하였다. 국내의 경우 2003년 하수슬러지의 매립이 금지된 후, 발생슬러지 대부분을 해양투기 등을 통해 처리하여왔다. 2009년 기준으로 국내에서 발생되는 하수슬러지량과 처리 분포를 살펴보면 전국 433개소 하수처리장에서 1일 평균 8,295톤(3,028천톤/년)이 발생되고 있으며, 이 중 47%가 해양투기 되고 있는 실정이다. 그러나 해양투기마저도 런던협약'96의정서 가입으로 2012년부터 금지됨에 따라 국내에서는 슬러지처리 및 재활용 방안과 관련한 연구개발이 활발히 진행되고 있는 중이다. 하수슬러지 처리 및 재활용기술의 경우 다양한 공법 등이 개발 중에 있으나 설비의 불안정 및 높은 투자비 등으로 인해 아직까지 상용화 된 설비 등은 많지 않은 실정이다. 이에 따라 본 연구에서는 POSCO 건설에서 개발한 슬러지 연료화 기술을 통해 생산된 슬러지 탄을 석탄 화력발전소 등에 석탄 보조연료로 활용할 수 있는 방안을 강구하여 상용화 가능한 혼소 기술을 개발하고자 하였다. 슬러지탄(발열량 3.000kcal 이상)을 석탄 화력발전소 보일러에 일정 비율로 혼소하여 슬러지탄의 품질평가, 중금속 용출시험 및 함량분석, 잔재물의 중금속 용출시험 등을 실시하였으며, 그 결과 모든 시험항목에서 연료화 관련 법적기준을 만족하는 것으로 나타났다. 슬러지탄을 화력발전소에 혼소하여 사용할 경우, 2012년부터 시행예정인 RPS(Renewable Portfolio Standard)법 대응 및 석탄사용량 저감 등을 통한 $CO_2$ 저감으로 저탄소 녹색성장의 자원순환사회를 구축하는 데 이바지 할 것으로 판단된다.

  • PDF

Environmental Assessment of Shotcrete Using Recycled Industrial By-Products (Fly Ash) and Silica Fume (산업부산물(플라이애시)과 실리카퓸을 재활용한 숏크리트의 환경유해성 평가)

  • Park, Cheolwoo;Sim, Jongsung;Kang, Taesung;Park, Seongeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.159-165
    • /
    • 2010
  • The problems such as natural resource exhaustion, pollutant emission and waste generation are increasing worldwide with the industrial development. The quantity of the industrial by-product in Korea is 6 million tons a year, and even its basic treatment processes including landfill, incineration and storage have reached their limits. In this study, fly ash and silica fume were applied to shotcrete to develop a method for the reuse of resources and to increase the use of fly ash, which is an industrial waste. An environmental hazard evaluation is a must to actively address the worldwide environmental problems, though. Therefore, an environmental impact assessment was conducted using the chemical content analysis test and heavy metal exudation test, for ten mixtures that were obtained through the pre-mixing and compressive strength tests. The results of the compressive strength test showed that all mixtures satisfied national and international standards. Cr, Cd and Hg were not detected, and Pb was detected only in some cases with fly ash. Cu and As were detected in all mixtures, but all of them satisfied national and international standards.

Engineering Properties of Sewage Sludge Landfill Ground in Nanji-Do (난지도 하수슬러지 매립지반의 공학적 특성)

  • Song, Young-Suk;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.125-133
    • /
    • 2007
  • The environmental and geotechnical properties are investigated to the 8th landfill area made of only sewage sludge in Nanji-Do. To do this, the soils are sampled in this area, and leaching tests, heavy metal content tests, and so on are performed to research the environmental properties. As the result of heavy metal content tests, Pb, Zn, Cu, Ni, Cd and Cr were leached from the sewage sludge. Because the leaching concentration of Cu is more than the standard value of California state, Cu content have to bring down during the recycling of the sewage sludge. Meanwhile, a series of tests concerning specific gravity, liquid and plastic limits, compaction, permeability and shear strength is performed to research the geotechnical properties. The sewage sludge is consisted of sand, silt and clay, and is classified into non-organic silt or organic clay with 42.3% of plastic index. As the result of compaction test, it is expected that the compaction effect according to variation of water contents is low relatively because the dry unit weight is low and the curve of compaction forms flatness. Also, as the result of direct shear tests, the cohesion is $0.058kg/cm^2$, and the internal friction angle is $14^{\circ}$. Taking everything into consideration, the various problems are happening in case of recycling the sludge like the cover layer of landfill and so on because the compaction is bad, and the shear strength is low. Also, it is expected that the ground water pollution caused by leaching the heavy metal into the sludge. To do recycling the sewage sludge in this site, supplementary and treatment programs should be prepared.

Analysis of Water Quality and Heavy Metals for Surface Water and Sediments of Upstream and Midstream in Nakdong River (낙동강 중 · 상류지역 하천의 표류수 및 퇴적층의 중금속 및 수질분석)

  • Ri, Chang Seop
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.547-555
    • /
    • 2000
  • The surface water in the upstream and midstream of Nakdong river, which is being used as tap water and industrial water supply in Daegu city and Kyungpook province, was analyzed in its water quality. In addition, the sediments of which was analyzed in terms of heavy metal and organic substance contents. All the sampling was done in the drought season for 2 days of June 22-23 and carried out in 10 sampling sites. The sites cover the whole Kyungpook provincial region, starting from Yangsam Bridge in Chyeong Ryang Provincial Park as the upper end, to the Ko Ryung Bridge as the lower end sampling site of Nakdong river that flows through Kyungpook province. The 22 items including $NH^{+}_{4}$, $NO^{-}_{2}$ and COD were analyzed for surface water and 11 items including organic constituents(trichloroethylene, etc) and heavy metals were analyzed for sediments. The sediments samples were analyzed by elution testing method and acid dissolution method and then the results were compared with each other. All heavy metals in samples were determined by Inductively Coupled Plasma-Atomic Emission Spectroscopy(ICP-AES) and other constituents were analyzed by standard testing methods of the Korean Ministry of Environment.

  • PDF