• Title/Summary/Keyword: 중개 신경과학

Search Result 2, Processing Time 0.008 seconds

Neural Substrates of Fear Based on Animal and Human Studies (공포의 신경 기저 회로 : 동물과 인간 대상 연구를 중심으로)

  • Baek, Kwangyeol;Jeong, Jaeseung;Park, Min-Sun;Chae, Jeong-Ho
    • Korean Journal of Biological Psychiatry
    • /
    • v.15 no.4
    • /
    • pp.254-264
    • /
    • 2008
  • Objectives : The neural substrate of fear is thought to be highly conserved among species including human. The purpose of this review was to address the neural substrates of fear based on recent findings obtained from animal and human studies. Methods : Recent studies on brain regions related to fear, particularly fear conditioning in rodents and humans, were extensively reviewed. Results : This paper suggests high consistency in anatomical structure and physiological mechanisms for fear perception, response, learning and modulation in animals and humans. Conclusions : Fear is manifested and modulated by well conserved neural circuits among species interconnected with the amygdala, such as the hippocampus and the ventromedial prefrontal cortex. Further research is required to incorporate findings from animal studies into a better understanding of neural circuitry of fear in human in a translational approach.

  • PDF

Comparison of Paired and Unpaired Image-to-image Translation for 18F-FDG Delayed PET Generation (18F-FDG PET 지연영상 생성에 대한 딥러닝 이미지 생성 방법론 비교)

  • ALMASLAMANI MUATH;Kangsan Kim;Byung Hyun Byun;Sang-Keun Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.179-181
    • /
    • 2023
  • 본 논문에서는 GAN 기반의 영상 생성 방법론을 이용해 delayed PET 영상을 생성하는 연구를 수행하였다. PET은 양전자를 방출하는 방사성 동위원소를 표지한 방사성의약품의 체내 분포를 시각화함으로서 암 세포 진단에 이용되는 의료영상 기법이다. 하지만 PET의 스캔 과정에서 방사성의약품이 체내에 분포하는 데에 걸리는 시간이 오래 걸린다는 문제점이 존재한다. 따라서 본 연구에서는 방사성의약품이 충분히 분포되지 않은 상태에서 얻은 PET 영상을 통해 목표로 하는 충분히 시간이 지난 후에 얻은 PET 영상을 생성하는 모델을 GAN (generative adversarial network)에 기반한 image-to-image translation(I2I)를 통해 수행했다. 특히, 생성 전후의 영상 간의 영상 쌍을 고려한 paired I2I인 Pix2pix와 이를 고려하지 않은 unpaired I2I인 CycleGAN 두 가지의 방법론을 비교하였다. 연구 결과, Pix2pix에 기반해 생성한 delayed PET 영상이 CycleGAN을 통해 생성한 영상에 비해 영상 품질이 좋음을 확인했으며, 또한 실제 획득한 ground-truth delayed PET 영상과의 유사도 또한 더 높음을 확인할 수 있었다. 결과적으로, 딥러닝에 기반해 early PET을 통해 delayed PET을 생성할 수 있었으며, paired I2I를 적용할 경우 보다 높은 성능을 기대할 수 있었다. 이를 통해 PET 영상 획득 과정에서 방사성의약품의 체내 분포에 소요되는 시간을 딥러닝 모델을 통해 줄여 PET 이미징 과정의 시간적 비용을 절감하는 데에 크게 기여할 수 있을 것으로 기대된다.

  • PDF