• Title/Summary/Keyword: 중간 냉각기

Search Result 33, Processing Time 0.021 seconds

A Study on Performance and Exhaust GAS Characteristics of the Diesel Engine with Turbocharger and Intercooler (터보 과급기와 중간 냉각기를 장착한 디젤기관의 성능 및 배출가스에 관한 연구)

  • 류규현;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.86-93
    • /
    • 1999
  • Turbocharger has been used to increase the performance of diesel engine, especially ship engine , for years. Recently, the turbocharger is being adopted not only for an agricultural engine but also for an automobile engine. To improve the performance of diesel engine , the problem of the reduction of A/F ratio in high speed should be solved. Turbocharger is well known for its cost effectiveness, reliability and duration . In this study, an experiment was conducted to verify simulation program . The results for natural aspiration engine and turbocharged engine were compared. In order to estimate the characteristics of exhaust gas, D-13 mode was selected. Power, torque and BSFC of turbocharged engine were increased than those of natural aspiration engine by about 48%, 46% and 5%, respectively . The components in exhaust gas except NOx from turbocharger engine were less than the amount set up for 2000-year regulation.

  • PDF

Design and Analysis of Two-Directional Regenerative Cooling Passages for Liquid Rocket Nozzle (액체로켓연소실의 양 방향 재생냉각유로 설계/해석)

  • Kim, Seong-Ku;Kim, Jong-Gyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 2008
  • The 30 tonf-class liquid rocket combustor currently being developed is designed to connect the fuel feeding line at a middle position of the supersonic nozzle in order to reduce both pressure loss in the regenerative cooling passage and overall envelope of the thrust chamber in spite of increase in design complexity. To verify the design of cooling passages including fuel ring, connecting holes, two-directional cooling channels and collectors, numerical analysis has been performed.

  • PDF

The Reduced Steam Consumptions in the Evaporation Process Using a Vapor Recompression (증기 재압축을 활용한 증발공정에서 스팀 절감에 대한 연구)

  • Noh, Sang Gyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.225-231
    • /
    • 2016
  • In this study, modeling and optimization study have been performed to obtain $1,524.58kg\;h^{-1}$ of a solidified NaCl by evaporating a 21.0 wt% of NaCl aqueous solution in order to reduce the steam consumption from $3,139kg\;h^{-1}$ to $496kg\;h^{-1}$ using a two-stage evaporation and a vapor recompression processes. Aspen Plus release 8.8 at AspenTech was utilized for the modeling of two stage evaporation process and PRO/II with PROVISION release 9.4 at Schneider Electric was also used for the simulation of two-stage vapor recompression process with an inter-cooler. For the simulation of the evaporation process containing NaCl aqueous solution, Aspen Plus release 8.8 at AspenTech Inc. was utilized and for the modeling of vapor recompression process PRO/II with PROVISION release at Schneider Electric Inc. For the vapor recompression process, single stage compression and two-stage compression system was compared.

Characteristics of Temperature Control by Hot-gas Bypass Flow Rate on Industrial Water Cooler (핫가스 바이패스 유량에 따른 산업용 냉각기의 온도제어 특성)

  • Baek, Seung-Moon;Choi, Jun-Hyuk;Byun, Jong-Yeong;Moon, Choon-Geun;Lee, Ho-Saeng;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1129-1136
    • /
    • 2009
  • The paper presents the performance characteristics for a cooling system using EEV. The water cooler was used to reduce thermal deformation and contraction due to high speed of machine tools and the EEV was used for capacity control for water cooler. The apparatus was designed for hot-gas bypass system which a hot-gas can flows from outlet of compressor to the inlet of evaporator. This experiment is the intermediary study for precise temperature control through PID control. The results show that the evaporator pressure increased and refrigeration capacity decreased as the EEV opening step of hot-gas bypass increased. These results can be used as basic data for the design of effective water cooler.

Regenerative Cooling Characteristics for Cooling Parameters of a Combustor in Liquid Rocket Combustors (재생냉각 연소기의 냉각기구에 따른 냉각 특성 파악)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.145-149
    • /
    • 2010
  • Thermal analyses have been performed to study the effect of location of fuel ring and thermal barrier coatings in regenerative cooling channels in a full-scale combustor. For the effective cooling, the fuel ring has better be installed near axial location of the low expansion ratio and low heat flux, and branching of cooling channels is preferable. Also, the radiative cooled nozzle extension is thought to be reasonable for the cooling of combustion walls. Among the possible coatings, $Y_2O_3$ stabilized $ZrO_2$ coating and Ni/Cr coating have been adopted. Compared with Ni/Cr coating which has high oxidation resistance, $Y_2O_3$ stabilized $ZrO_2$ coating, one of ceramic coatings is found to be much effective to sustain the thermal survivability of combustion walls.

  • PDF

Thermodynamic Analysis of High Pressure Multi-stage Reciprocating Compressors with Inter-coolers (중간 냉각기가 있는 고압 다단 왕복동식 압축기에 관한 열역학적 해석)

  • Lee, Euk-Soo;Kim, Myung-Hun;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1238-1247
    • /
    • 2003
  • Simplified thermodynamic analysis of high pressure 4-stage reciprocating compressors with 4 inter-coolers has been investigated to predict a behavior of a compressor system for NGV(natural gas vehicles). A computer program has been developed to predict and estimate the performance of high pressure 4-stage reciprocating compressor system. Thermodynamic properties of compressed natural gas(CNG) were calculated by ideal gas theory and compression cycle was assumed as reversible adiabatic compression and expansion processes, and isobaric intake and discharge processes. Comparison between results predicted by calculation model and measured by experimental tests is presented.

Investigation of Characteristics for Cooling Parameters of a Combustor in Liquid Rocket Combustors (재생냉각 연소기의 냉각기구에 따른 특성 파악)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.45-50
    • /
    • 2010
  • Thermal analyses have been performed to study the effect of location of fuel ring and thermal barrier coatings in regenerative cooling channels in a full-scale combustor. For the effective cooling, the fuel ring has better be installed near axial location of the low expansion ratio and low heat flux, and branching of cooling channels is preferable. Also, the radiative cooled nozzle extension is thought to be reasonable for the cooling of combustor walls. Among the possible coatings, $Y_2O_3$ stabilized $ZrO_2$ coating and Ni/Cr coating have been adopted. Compared with Ni/Cr coating which has high oxidation resistance, $Y_2O_3$ stabilized $ZrO_2$ coating, one of ceramic coatings is found to be much effective to sustain the thermal survivability of combustion walls.

일본의 PWR 운전${\cdot}$관리

  • 한국원자력산업회의
    • Nuclear industry
    • /
    • no.6
    • /
    • pp.20-22
    • /
    • 1979
  • 본문은, 일본의 통산성${\cdot}$에너지청이 4월 24일 일본의 원발20기에 대해서 행한 안전총점검의 중간보고를 요약한 것이다. 여기서, 보수관리상황을 점검한 주요설비는 다음과 같다. (1) 보조급수계 (2) 가압기방출 Valve (3) 비상용노심냉각장치 1) 고압주입계 2) 축압 Tank 3) 저압주입계 4) 격납용기내부 Spray계 5) 격납용기격리변 6) 비상용전원 등이며 주로 기동전 확인과 일상점검에 중점을 두었던 것이다.

  • PDF

Investigation on Performance Analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor (소듐냉각고속로 원형로 소듐-물 반응 압력완화계통 성능 해석 연구)

  • Park, Sun Hee;Han, Ji-Woong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.28-41
    • /
    • 2019
  • We carried out performance analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor. We analyzed transient-dynamic behavior of fluids inside the steam generator to vent into a sodium dump tank or a water dump tank when tubes in the steam generator were broken to cause a large-water-leak accident. Accordingly, we preliminarily evaluated design requirements of our system. Our results showed that sodium in the shell side of the steam generator and in Intermediate Heat Transport System was completely vented within 50 s and feed water in the tube side of the steam generator was completely vented within 2.5 s. It was analyzed that pressure of the tube side of the steam generator was higher than pressure of the shell side of the steam generator, which showed that sodium in the shell side did not flow into the tube side. Our results are expected to be used as basis information to performance analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor.