Zoom motion estimation of video sequence is very complicated for implementation. In this paper, we propose a method to implement the zoom motion estimation using together the depth camera and color camera. Depth camera obtains the distance information between current block and reference block, then zoom ratio between both blocks is calculated from this distance information. As the reference block is appropriately zoomed by the zoom ratio, the motion estimated difference signal can be reduced. Therefore, the proposed method is possible to increase the accuracy of motion estimation with keeping zoom motion estimation complexity not greater. Simulation was to measure the motion estimation accuracy of the proposed method, we can see the motion estimation error was decreased significantly compared to conventional block matching method.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2001.11b
/
pp.103-106
/
2001
본 논문에서는 MPEG2비디오 스트림에서 직접 얻을 수 있는 정보들을 활용하여 카메라의 움직임을 추정하여 이를 기반으로 하여 움직이는 객체를 추정하고자 한다. 이를 위해, 먼저 MPEG2의 움직임 벡터는 압축의 효율성 때문에 움직임의 예측이 순서적이지 못한데, 예측 프레임들의 속성을 이용하여 이를 광 플로우(Optical Flow)를 갖는 움직임 벡터(Motion Vector)로 변환하였다. 그리고 이러한 벡터들을 이용하여 카메라의 기본적인 움직임인 팬(Fan), 틸트(Tilt). 줌(Zoom) 등을 정의하였다. 이를 위하여 팬, 틸트-줌 카메라 모델의 매개변수와 같은 의미의 $\Delta$x, $\Delta$y, $\alpha$값을 정의하고자 움직임 벡터 성분의 Hough변환을 이용하여 $\Delta$x, $\Delta$y, $\alpha$값들을 구하였다. 또한 이러한 카메라 움직임(Camera Operation)은 시간적으로 연속적으로 발생하는 특징을 이용하여 각 프레임마다 구한 카메라의 움직임을 보정하였다. 마지막으로 움직이는 객체의 추정은 우선 사용자가 원하는 객체를 바운딩박스 형태로 정의한 후 카메라 움직임이 보정된 객체의 움직임 벡터를 한 GOF(Group of Pictures) 단위로 면적 기여도에 따라 누적하여 객체를 추적하고 해석하였으며 DCT 질감 정보를 이용하여 객체의 영역을 재설정 하였다. 물론 압축된 MFEG2비디오에서 얻을 수 있는 정보들은 최대 블록 단위이므로 객체의 정의도 블록단위 이상의 객체로 제한하였다. 제안된 방법은 비디오 스트림에서 직접 정보를 얻음으로써 계산속도의 향상은 물론 카메라의 움직임특성과 움직이는 객체의 추적들을 활용하여 기존의 내용기반의 검색 및 분석에도 많이 응용될 수 있다. 이러한 개발 기술들은 압축된 데이터의 검색 및 분석에 유용하게 사용되리라고 기대되며 , 특히 검색 툴이나 비디오 편집 툴 또는 교통량 감시 시스템, 혹은 무인 감시시스템 등에서 압축된 영상의 저장과 빠른 분석을 요구시 필요하리라고 기대된다.
Under nonlinear characteristics of frames, we propose the frame interpolation using GRNN to enhance the visual picture quality. By full search with block size of 128x128~1x1 to reduce blocky artifact and image overlay, we select the frame having block of minimum error and re-estimate the nonlinear moving vector using GRNN. We compare our scheme with forward(backward) motion compensation, bidirectional motion compensation when the object movement is large or the object image includes zoom-in and zoom-out or camera focus has changed. Experimental results show that the proposed method provides better performance in subjective image quality compared to conventional MCFI methods.
The Transactions of the Korea Information Processing Society
/
v.7
no.11
/
pp.3566-3575
/
2000
In this paper, we propose an simple and efficient method to estunate the camera operation by using compressed information, which is extracted diracily from MPEG2 stream without complete decoding. In the method, the motion vector is converted into approximate optical flow by using the feature of predicted frame, because the motion vector in MPEG2 video stream is not regular sequene. And they are used to estimate the camera operation, which consist of pan, and zoom by Hough transform technique. The method provided better results than the least square method for video stream of basketball and socer games. The proposed method can have a reduced computational complexity because the information is directiv abtained in compressed domain. Additionally it can be a useful technology in content-based searching and analysis of video information. Also, the estimatd cameral operationis applicable in searching or tracking objects in MPEG2 video stream without decoding.
Object tracking is being studied with various techniques such as Kalman filter and Luenberger tracker. Even in situations, such as the one in which the system model is not well specified, to which existing signal processing techniques are not successfully applicable, it is possible to design artificial neural networks to track objects. In this paper, we propose an artificial neural network, which we call 'maximum-likelihood weighted-average neural network', to continuously track unpredictably moving objects. This neural network does not directly estimate the locations of an object but obtains location estimates by making weighted average combining various results of maximum likelihood tracking with different data lengths. We compare the performance of the proposed system with those of Kalman filter and maximum likelihood object trackers and show that the proposed scheme exhibits excellent performance well adapting the change of object moving characteristics.
Jeong Dong-Gil;Kang Dong-Goo;Yang Yu Kyung;Ra Jong Beom
Journal of the Institute of Electronics Engineers of Korea SP
/
v.42
no.6
/
pp.1-8
/
2005
In this paper, we propose a two-stage head tracking algorithm adequate for real-time active camera system having pan-tilt-zoom functions. In the color convergence stage, we first assume that the shape of a head is an ellipse and its model color histogram is acquired in advance. Then, the min-shift method is applied to roughly estimate a target position by examining the histogram similarity of the model and a candidate ellipse. To reflect the temporal change of object color and enhance the reliability of mean-shift based tracking, the target histogram obtained in the previous frame is considered to update the model histogram. In the updating process, to alleviate error-accumulation due to outliers in the target ellipse of the previous frame, the target histogram in the previous frame is obtained within an ellipse adaptively shrunken on the basis of the model histogram. In addition, to enhance tracking reliability further, we set the initial position closer to the true position by compensating the global motion, which is rapidly estimated on the basis of two 1-D projection datasets. In the subsequent stage, we refine the position and size of the ellipse obtained in the first stage by using shape information. Here, we define a robust shape-similarity function based on the gradient direction. Extensive experimental results proved that the proposed algorithm performs head hacking well, even when a person moves fast, the head size changes drastically, or the background has many clusters and distracting colors. Also, the propose algorithm can perform tracking with the processing speed of about 30 fps on a standard PC.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.