• Title/Summary/Keyword: 줄기세포치료

Search Result 161, Processing Time 0.022 seconds

2005 전남대학교 줄기세포 심포지움 개최 후기

  • 한호재
    • Journal of the korean veterinary medical association
    • /
    • v.41 no.10
    • /
    • pp.918-928
    • /
    • 2005
  • 체세포 핵이식을 통한 정상인과 환자 체세포 유래의 다능성 인간배아 줄기세포주 확립 및 응용 - 체세포 핵이식을 통한 다능성 인간 배아 줄기세포주 확립의 기술적 측면 - 인간배아줄기세포의 분화 : 발생생물학적 접근 및 세포치료에 대한 전망 - 마우스 배아줄기세포 기능들의 호르몬 조절 - 간엽줄기세포를 이용한 골조직 공학 - 조혈모세포의 재생 - 제대혈 유래 간엽줄기세포를 이용한 세포치료 - 난치성 혈액종양질환에서 수지상세포를 이용한 세포면역치료법 확립

  • PDF

전뇌 허혈성 뇌졸중 (Global Ischemia) 동물 모델 Mongolian Gerbil에 대한 인간 배아줄기세포 이식효과

  • 김광수;심인섭;김은영;정길생;이원돈;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.269-269
    • /
    • 2004
  • 배아줄기 세포는 신경퇴행성 질환의 치료 수단으로 많은 가능성을 가지고 있는 것으로 알려져 있다. 본 연구에서는 중풍 동물모델에서 수중미로 학습을 이용하여 중풍 치료제로서 인간배아줄기 세포의 인지 및 기억력 장애에 대한 기능 회복의 효능을 검토하였고, 인간배아줄기 세포의 신경세포 보호효과를 규명하기 위하여 면역조직화학 염색법을 이용하여 해마내의 세포사멸을 측정하였으며, 인지 및 기억증진의 작용을 규명하기 위하여 아세틸콜린성 신경세포의 활성도를 측정하였다. (중략)

  • PDF

성체줄기세포 연구이 대규모 임상 성공의 의미 및 활용가치

  • Na, Hyeong-Gyun
    • Health and Mission
    • /
    • s.4
    • /
    • pp.26-38
    • /
    • 2005
  • 최근 성체줄기세포도 배아줄기세포처럼 자신이 속한 조직이나 장기가 아닌 다른 배엽의 줄기세포로 부화할 수 있는 교차분화 능력이 알려지면서 여러 질환에서 이식치료가 활발하게 진행되고 있다. 특히 가톨릭대학교 외신경계 유전테연구센터에서는 난치성 혈관질환 중 놔경색, 버거씨병 등 환자 64명에게서 현저한 치료 효과를 보았다.

  • PDF

Stem Cell Based Strategies for the Treatment of Degenerative Retinal Diseases (망막변성질환에서의 줄기세포 기반치료)

  • Park, Jung-Hyun;Ku, Seung-Yup;Cho, Myung-Soo;Lee, Hak-Sup;Choi, Young-Min;Moon, Shin-Yong;Yu, Hyeong-Gon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.3
    • /
    • pp.199-206
    • /
    • 2010
  • Stem-cell therapy has the potential to improve vision in patients with untreatable retinal disease. Various types of cell source including fetal, embryonic and adult stem cells, intrinsic and extrinsic factors for differentiation into retinal progenitors and transplantation mode were discussed in this review. Experimental approaches have successfully induced photoreceptor precursor cells and retinal pigment epithelium. Stem-cell-based therapy is a promising treatment to restore vision in patients with retinal disease, in spite of the challenges.

Comparison of MicroRNA Expression in Placenta-derived Mesenchymal Stem Cells and Bone Marrow-derived Stem Cells (태반유래 줄기세포와 골수유래 줄기세포에서의 마이크로RNA 발현비교)

  • Kim, Soo Hwan
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1238-1243
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) have been widely used as cellular therapeutic agents. They have their own characteristic stemness, and thus, they can be used in the treatment of many chronic diseases and in anticancer therapy. MSC therapy has many advantages over chemical therapy. MSC therapy is based on self or homogeneous origin; as such, it is expected to be effective in the treatment of various diseases. In addition, microRNAs in particular have been studied for their structure and function, and they are also expected to prove effective for use as therapeutic agents in cancer or chronic diseases. MicroRNAs are largely associated with metabolism and homeostasis. Therefore, over- or under-expression of microRNAs leads to chronic diseases. Conversely, effective control of the expression of specific microRNAs reduces the risk of many chronic diseases. However, there have been no reports thus far on the synergistic effects of MSCs and microRNAs. Therefore, in this study, we examined the relationship between MSCs and microRNAs using placenta-derived MSCs (PDSCs), bone marrow-derived MSCs (BM-MSCs), and fibroblast (WI-38) cells. We studied the expression of some microRNAs in MSCs and compared the expression in each cell line and cell passage. As a result, we found that the expression of microRNA-34a was higher in PDSCs than in BM-MSCs and that the expression of microRNA-27a, 33a, 33b, and 211 was higher in BM-MSCs than in PDSCs. Therefore, we expect that each MSC line will be used as cell therapy, considering its expressed functional microRNA.

성체줄기세포와 난치병 진료의 전망

  • O, Il-Hwan
    • Health and Mission
    • /
    • s.4
    • /
    • pp.17-19
    • /
    • 2005
  • 줄기세포는 난치병에 걸렸을 때 장기의 기능을 담당할 수 있는 세포를 재생해 낼 수 있게 한다. 줄기세포는 근래에 "21세기판 불로초"로 불리며, 무한히 증식 될 수 있는 자기 재생능, 정상염색체 유지 및 다양한 세포로의 분화 등 놀라운 특성으로 난치병, 노인성 질환 치료를 위한 치료제로 활용 중이다.

  • PDF

Comparison of Neural Cell Differentiation of Human Adipose Mesenchymal Stem Cells Derived from Young and Old Ages (연령별 지방 중간엽 유래 줄기세포의 신경세포로의 분화 능력 비교)

  • Jo, Jung-Youn;Kang, Sung-Keun;Choi, In-Su;Ra, Jeong-Chan
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.227-237
    • /
    • 2009
  • Recently, adipose mesenchymal stem cells (AdMSC) that are similar to bone marrow MSC and blood derived MSC are thought to be another source for stem cell therapy. However, the diseases that can be applied for stem cells therapy are age-dependent degenerative diseases. Accordingly, the present study investigated the growth and differentiation potential to neural cells of human AdMSC (hAdMSC) obtained from aged thirty, forty and fifty. The growth of cells and cell viability were measured by passage and neural differentiation of hAdMSC was induced in neural differentiation condition for 10 days. Our results demonstrated that cell number, viability and morphology were not different from hAdMSC by age and passage. Immunofluorescence analysis of neural cell marker (TuJ1, NSE, Sox2, GFAP or MAP2) demonstrated no significant differences in neural cell differentiation by age and passage. As the number of passage was increased, the mRNA level of MAP2 and Sox2 was decreased in hAdMSC from age of 50 compared to hAdMSC from age of 30. In conclusion, the present study demonstrated that ability of neural cell differentiation of hAdMSC was maintained with ages, suggesting that autologous stem cells from aged people can be applied for stem cell therapy with age-dependent neural disease with the same stem cell quality and ability as stem cell derived from young age.

  • PDF

Mesenchymal Stem Cell-derived Exosomes: Applications in Cell-free Therapy (중간엽줄기세포유래 엑소좀: 비세포치료제로서의 활용)

  • Heo, June Seok;Kim, Jinkwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.391-398
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are an attractive resource for refractory patients because of their anti-inflammatory/immunomodulatory capability and multi-lineage differentiation potential. The transplantation of MSCs has led to positive results in preclinical and clinical application to various diseases, including autoimmune disease, cardiovascular disease, cancer, liver cirrhosis, and ischemic stroke. On the other hand, studies have shown that paracrine factors, not direct cell replacement for damaged cells or tissue, are the main contributors in MSC-based therapy. More recently, evidence has indicated that MSC-derived exosomes play crucial roles in regulating the paracrine factors that can mediate tissue regeneration via transferring nucleic acids, proteins, and lipids to the local microenvironment and cell-to-cell communication. The use of these exosomes is likely to be beneficial for the therapeutic application of MSCs because their use can avoid harmful effects, such as tumor formation involved in cell transplantation. Therefore, therapeutic applications using MSC-derived exosomes might be safe and efficient strategies for regenerative medicine and tissue engineering. This review summarizes the recent advances and provides a comprehensive understanding of the role of MSC-derived exosomes as a therapeutic agent.

New Isolation Technique and Culture System for Clinical Applications of Human Amniotic Epithelial Stem Cells (인간태반양막유래 상피줄기세포의 임상적용을 위한 새로운 세포분리 및 배양 기술)

  • Woo, Sang-Kyu;Jo, Jung-Yoon;Shin, Il-Seob;Kang, Sung-Keun;Ra, Jeong-Chan
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.271-280
    • /
    • 2009
  • Human placenta is abundant source of adult stem cells. Especially, amniotic epithelial cells have stem cell characteristics, expressing surface markers normally present on embryonic stem cells and germ cells. However, culturing and expanding amniotic epithelial cells in vitro without feeder cells are difficult due to endogenous characteristics of epithelial cells. In the present study, amniotic epithelial cells are isolated and proliferated in several passages by applying dithiothreitol and a Rho-associated kinase inhibitor in culture media. The cultured amniotic epithelial cells showed the epithelial and stem cell characteristics. In conclusion, human placenta-derived amniotic epithelial stem cells can be a major source of stem cells for medical treatment of various diseases without any controversial issues.

  • PDF