• Title/Summary/Keyword: 준2차원 수치모형

Search Result 29, Processing Time 0.033 seconds

An Analysis of Flooding Range due to the Outflow of Paldang Dam at Hangang Parks (팔당댐 방류량에 따른 한강 시민공원 침수범위 분석)

  • Lee, Jae-Joon;Kwak, Chang-Jae;Lee, Sang-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1580-1584
    • /
    • 2008
  • 친수환경으로서의 수변공간의 활용은 위락공간 및 자연환경으로서 도시민의 삶의 질 향상에 매우 큰 의미를 지닌다. 서울시민의 대표적인 친수환경 공간인 한강시민공원은 조성 이후 이용자에게 위락 및 자연공간으로서 그 역할을 다하여 왔으나 최근에 급증하고 있는 이상기상현상과 국지적 집중호우의 증가에 따라 도시지역 및 상류지역의 홍수 발생시에는 한강시민공원의 폐쇄와 함께 이용자의 접근을 사전통제하거나 신속하게 대피시켜 안전을 도모하여야 한다. 따라서 본 연구에서는 한강시민공원이 침수되는 상황을 모의분석하기 위해 필요한 각종 기본 자료와 매개변수에 대한 고찰을 실시하였고, 팔당댐 방류량에 따른 1차원 및 2차원 수치모형을 통한 한강시민공원의 홍수위 영향을 분석하였다. 본 연구에서 분석한 결과는 홍수 발생시 한강시민공원의 합리적인 이용 및 관리와 이용자의 안전 및 비상대처계획 등의 수립에 있어서 중요한 자료로 활용될 수 있을 것이다.

  • PDF

Comparative Analysis for Numerical Modeling of Tidal Current on Geum River Estuary (금강하구 해역에 대한 조류 수치모델링의 비교 해석)

  • Kang, Sung-Jun;Park, Young-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3583-3589
    • /
    • 2010
  • The semi-implicit scheme proposed by Backhaus is introduced to solve two-dimensional shallow water equation. This mothod is applied for the numerical model solving surface elevation and velocity field of Geum River estuary. For the verification of the method, numerical solutions by this model are compared with ones by Heap's well known explicit model. Solutions of two models resemble each other. The time-step chosen for the semi-implicit scheme turned out to be 3 to 6 times longer than explicit model depending on the stringent CFL criterion. The computation time could be reduced at least 50%. It was proved that this scheme is easy to handle dry banks which can be seen in Geum River estuary and numerical stability is obtained for long time computation.

Determination of the Optimal Sediment Discharge Formula for Hyeongsan River Using GSTARS (GSTARS모형을 이용한 형산강의 최적 유사량공식 결정)

  • Ahn, Jung Min;Lyu, Siwan;Lee, Nam Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.1-7
    • /
    • 2012
  • Quasi-two dimensional numerical model (GSTARS) was applied to determine the optimal sediment discharge formula for simulating the sedimentologic characteristics of Hyeongsan river. The field measurements have been conducted to obtain the data, such as sediment discharge, bed material, and channel geometry, for model calibration and verification. The sediment discharge formulas, which have been generally used, have been assessed according to the average error, relative error, RMSE, RRMSE, discrepancy ratio and Nash-Sutcliffe efficiency coefficient for bed changes along the thalweg. From the results, Laursen formula(1958) shows the best performance to simulate the long-term bed change of Hyeongsan river.

Three-dimensional Inversion of Resistivity Data (전기비저항 탐사자료의 3차원 역산)

  • Yi Myeong-Jong;Kim Jung-Ho;Cho Seong-Jun;Chung Seung-Hwan;Song Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.191-201
    • /
    • 1999
  • The interpretation of resistivity data has, so far, mainly been made under the assumption that the earth is of relatively simple structure and then using one or two-dimensional inversion scheme. Since real earth structure and topography are fully three-dimensional and very complicated In nature, however, such assumptions often lead to misinterpretation of the earth structures. In such situations, three-dimensional inversion is probably the only way to get correct image of the earth. In this study, we have developed a three-dimensional inversion code using the finite element solution for the forward problem. The forward modeling algorithm simulates the real field situation with irregular topography. The inverse problem is solved iteratively using the least-squares method with smoothness constraint. Our inversion scheme employs ACB (Active Constraint Balancing) to enhance the resolving power of the inversion. Including Irregular surface topography in the inversion, we can accurately define the earth structures without artifact in the numerical tests. We could get reasonable image of earth structure by Inverting the real field data sets taken over highway bridge construction site.

  • PDF

An Application Analysis of Vegetation Permission Map in Urban Stream in Korea (국내 도시하천에 대한 식수허가지도의 적용성 검토)

  • Lee, Joon-Ho;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.47-55
    • /
    • 2005
  • In order to design and manage the urban streams, the change of hydraulic characteristics by vegetation must be analyzed clearly. Planting criteria of vegetation in a urban stream were investigated and the design method of vegetation permission map was analyzed in this study. In addition, variations of water level due to vegetation are calculated by quasi two dimensional numerical model, HEC-RAS model and FESWMS model. Joongrang stream(Gunja bridge${\sim}$Jangan bridge reach) was selected as the case study stream. According to the criteria of vegetation, it is decided that vegetation density was $0.5{\sim}1.0$ tree/ha for selected tall tree in right floodplain and shrubs can be planted in the right and left floodplain area except the important hydraulic structures site. The selected shrubs planting simulations with three models show that water level in selected floodplain area increase approximately 12cm for the 100 year return period flood. The applicability of vegetation permission map in Korean urban stream was analyzed in this paper.

Long-term Riverbed Change Analysis of Climate Scenario in Nakdong River using GSTARS Model (GSTARS 모형을 이용한 낙동강에서의 기후시나리오에 대한 장기하상변동 분석)

  • Lee, Jong Mun;Ahn, Jungkyu;Kim, Young Do;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.62-62
    • /
    • 2016
  • 대하천에서의 하도정비 및 보 신설 후 다양한 하천환경변화가 예상됨에 따라 각종 변화에 의해 발생할 수 있는 현상들을 예측하고 환경변화에 의한 재난을 예방하기 위한 대책수립이 절실히 요구되고 있는 실정이다. 하천에서의 하상변동은 경우에 따라 홍수위 상승, 저수 기능 감퇴, 용수와 취수 방해, 유사에 의한 오염원 확산 등의 문제를 발생시킬 수 있다. 기후변화에 따른 강우패턴의 변화로 하천 내 수리적 요소가 변화되고 그로인해 발생하는 하상 변동의 예측이 필요하다. 만일 유역의 특성이 유지된다면 하천의 동적평형상태인 정비 이전의 하천으로 돌아가려고 할 것이다. 하천이 준설로 넓어지고 깊어진 상태로 이전의 동적인 평형상태로 돌아가려고 하도가 좁아지고 얕아질 것이다. 그러나 기후변화로 인해 유역에서의 유량 및 유사량이 달라질 것으로 예상된다. 하지만 하상변동모델과 기후변화를 연계하여 하도의 변화를 비교 분석한 연구는 매우 드물다. 본 연구에서는 기후변화에 의한 유량의 변화에 따른 시나리오를 구성하고 장기간, 장구간에 걸친 하상변동 양상을 예측하였다. 준2차원 수치모형인 GSTARS를 이용하여 낙동강 상류에서 상주보 구간 사이의 기후변화 영향을 분석하고자 장기 기후시나리오를 구성하고 유사량 공식과 수류 튜브 개수에 따른 각각의 시나리오별 하상변동 양상을 예측하고 최심하상고, 횡방향에 따른 모의결과를 분석하였다.

  • PDF

Reflection of Porous Wave Absorber Using Quasi-linear Numerical Model (준선형 수치모델을 이용한 투과성 소파장치의 반사율)

  • Ko, Chang-hyun;Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In present study, we suggested the quasi-linear model that linearizes the quadratic drag representing the energy loss across the porous plate. The quasi-linear model was solved by Boundary Element Method (BEM) for development of the porous wave absorber suitable for 2-D wave tank. The drag coefficient at the porous plate was newly obtained through comparison of experimental results. It is found that the porous wave absorber with porosity 0.1, submergence depth d/h = 0.1, and inclined angle $10^{\circ}{\leq}{\theta}{\leq}20^{\circ}$ shows the effective wave absorption. Using the developed quasi-linear numerical model, the optimal design of various types of a porous wave absorber will be applied.

Application of Flood Prevention Measures Using Detailed Topographic Data of River and Lowland (하천-제내지의 상세 지형자료를 이용한 수해방지대책 적용)

  • LEE, Jae-Yeong;HAN, Kun-Yeun;KEUM, Ho-Jun;KO, Hyun-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.1
    • /
    • pp.15-29
    • /
    • 2020
  • Recently, the incidence of flooding in Korea has decreased by the measures by central and local governments, however the scale of damage is increasing due to the improvement of living standard. One of the causes of such flood damage is natural causes such as rainfall exceeding the planned frequency of flood control under climate change. In addition, there are artificial causes such as encroachment of river spaces and management problems in upstream basins without consideration of downstream damage potential by regional development flood. In this study, in order to reduce the inundation damage caused by flooding of river, the situation at the time of inundation damage was reproduced by the detailed topographic data and 2D numerical model. Therefore, the effect of preparing various disaster prevention measures for the lowland was simulated in advance so that quantitative evaluation could be achieved. The target area is Taehwa river basin, where flooding was caused by the flooding of river waters caused by typhoon Chaba in October 2016. As a result of rainfall-discharge and two-dimensional analysis, the simulation results agree with the observed in terms of flood depth, flood arrival time and flooded area. This study examined the applicability of hydraulic analysis on river using two-dimensional inundation model, by applying detailed topographic data and it is expected to contribute to establish of disaster prevention measures.

Analysis of Pull-out Behavior of Tunnel-type Anchorage for Suspended Bridge Using 2-D Model Tests and Numerical Analysis (2차원 모형실험 및 수치해석을 통한 현수교 터널식 앵커리지의 인발거동 특성 분석)

  • Seo, Seunghwan;Park, Jaehyun;Lee, Sungjune;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.61-74
    • /
    • 2018
  • In this study, the pull-out behavior of tunnel type anchorage of suspension bridges was analyzed based on results from laboratory size model tests and numerical analysis. Tunnel type anchorage has found its applications occasionally in both domestic and oversea projects, therefore design method including failure mode and safety factor is yet to be clearly established. In an attempt to improve the design method, scaled model tests were conducted by employing simplified shapes and structure of the Ulsan grand bridge's anchorage which was the first case history of its like in Korea. In the model tests, the anchorage body and the surrounding rocks were made by using gypsum mixture. The pull-out behavior was investigated under plane strain conditions. The results of the model tests showed that the tunnel type anchorage underwent wedge shape failure. For the verification of the model tests, numerical analysis was carried out using ABAQUS, a finite element analysis program. The failure behavior predicted by numerical analysis was consistent with that by the model tests. The result of numerical analysis also showed that the effect of Poisson's ratio was negligible, and that a plugging type failure mode could occur only when the strength of the surrounding rocks was 10 times larger than that of anchorage body.

Sensitive analysis of river geometry under various flow conditions in South Han River using GSTARS model (GSTARS 모형을 이용한 한강 상류부에서 유량변동에 따른 하상변동 민감도 분석)

  • Ahn, Jungkyu;Lee, Jong Mun;Kim, Young Do;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.347-359
    • /
    • 2016
  • Flow input from the basin will not remain the same as before due to climate changes. Since the predictions on river discharge due to climate change is given by scenarios, various discharge scenarios were prepared in this study. For a long term and reach prediction, semi-two dimensional sediment transport model, GSTARS, was used. The flood water surface elevations predicted by GSTARS model were analysed statistically and it was concluded that the model is applicable for the South Han River. Three stream tubes is the most suitable to simulate two dimensional river geometric change River geometric changes. For sediment load computation, Ackers and White equation and Yang equation were resonable. River will become narrower regardless of discharge variation, more discharge results in deeper channel.