• Title/Summary/Keyword: 준-야기 안테나

Search Result 19, Processing Time 0.025 seconds

Compact Dual-band Double Dipole Quasi-Yagi Antenna with V-shaped Ground Plane (V-모양 접지면을 가지는 소형 이중 대역 이중 다이폴 준-야기 안테나)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.436-441
    • /
    • 2018
  • In this paper, a design method for a compact double dipole quasi-Yagi antenna with a V-shaped ground plane operating in dual bands including 2.45 GHz and 5 GHz wireless LAN frequency bands is studied. First, a quasi-Yagi antenna operating in the 2.45 GHz band is designed, and a V-shaped ground plane is used instead of a conventional strip ground plane to reduce the length of the antenna. A second dipole is connected to the dipole driver of the quasi-Yagi antenna for 2.45 GHz band and a director is appended for 5 GHz band operation. A prototype of the proposed dual-band antenna operating at 2.45 GHz WLAN band and 4.57-7.11 GHz band is fabricated on an FR4 substrate with a dimension of 40 mm by 55 mm. Fabricated antenna shows frequency bands of 2.33-2.75 GHz and 4.38-7.5 GHz for a voltage standing wave ratio less than 2. Measured gain remains more than 4 dBi in both bands.

Design of a compact quasi-Yagi antenna for portable RFID reader (휴대형 RFID 리더용 소형 준-야기 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • In this paper, we considered a design method of a compact quasi-Yagi antenna for portable UHF RFID readers. The antenna consists of a dipole driver and a reflector printed on a dielectric substrate, and it is fed by a microstrip line. In order to reduce the antenna size, the dipole and reflector are bent and the balun between the feeding microstrip line and coplanar strip (CPS) line is integrated within the CPS line. The effects of the geometrical parameters of the proposed antenna on the antenna performance are examined, and the parameters are adjusted to be suitable for the operation in UHF RFID band (902-928 MHz). The size of the fabricated antenna is $70mm{\times}75mm$, and the experiment results reveal a frequency band of 892-942 MHz for a voltage standing wave ratio < 2, a gain > 3.5 dBi, and a front-to-back ratio > 6.6 dB over the frequency band for UHF RFID.

Design of a compact coplanar waveguide-fed 2-element quasi-Yagi antenna (코플래너 도파관으로 급전되는 소형 2-소자 준-야기 안테나 설계)

  • Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2199-2205
    • /
    • 2016
  • In this paper, a design method for a coplanar waveguide (CPW)-fed 2-element quasi-Yagi antenna (QYA) is studied. A balun between CPW and coplanar strip (CPS) which feeds a planar dipole is implemented by connecting the one end of ground strips in a CPW to a signal strip. The antenna size is reduced by bent strip dipole and reflector, and an integrated balun. The proposed antenna was designed for the operation in a UHF radio frequency identification (RFID) band of 902-928 MHz, and the effects of various parameters such as dipole length, reflector length, distance between dipole and reflector, feed position were examined. The antenna with a size of $90mm{\times}80mm$ was fabricated on an FR4 substrate, and the experiment results reveal a frequency band of 885-942 MHz for a voltage standing wave ratio < 2, a gain > 4.3 dBi, and a front-to-back ratio > 7 dB over the frequency band for the UHF RFID.

3-Element Quasi-Yagi Antenna with a Modified Balun for DTV Reception (변형된 밸런을 갖는 DTV 수신용 3소자 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.672-678
    • /
    • 2017
  • In this paper, we studied a design method for a broadband quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The proposed antenna is composed of a dipole driver, a rectangular patch type director close to the dipole, and a ground reflector printed on an FR4 substrate. A balun between a microstrip line and a coplanar strip (CPS) line is a rectangular patch inserted along the center of the CPS. The end of the balun is connected to the CPS line through a shorting pin. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV, and the characteristics of the designed antenna are examined. The antenna has a good performance such as a frequency band of 430-842 MHz for a voltage standing wave ratio < 2, a gain > 3.7 dBi, and a front-to-back ratio > 7.4 dB.

Broadband Quasi-Yagi Antenna with a Ring-type Balun for Indoor DTV Reception (링형 밸런을 이용한 실내 DTV 수신용 광대역 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.906-912
    • /
    • 2017
  • In this paper, we studied a design method for a broadband 3-element quasi-Yagi antenna (QYA) for indoor digital television (DTV) reception. The proposed QYA employs a novel balun between a microstrip (MS) line and a coplanar strip (CPS) line feeding the driver dipole. The proposed balun is constructed by connecting the end of MS line to CPS line through a shorting pin, and the CPS and ground reflector are connected through a circular ring-type conductor. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The antenna fabricated on an FR4 substrate with a size of $270mm{\times}150mm$ showed a good performance such as a frequency band of 470-820 MHz for a voltage standing wave ratio < 2, a gain > 4.0 dBi, and a front-to-back ratio > 8.4 dB over the DTV frequency band.

Design of Double Dipole Quasi-Yagi Antenna with enhanced bandwidth and gain (대역폭과 이득이 향상된 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.252-258
    • /
    • 2017
  • In this paper, the bandwidth and gain enhancement of a double-dipole quasi-Yagi antenna (DDQYA) using a modified balun and two directors is studied. The proposed DDQYA consists of two strip dipoles with different lengths, a ground reflector, which are connected through a coplanar strip line, and two directors. The modified balun is used to increase the bandwidth, whereas two directors are appended to the DDQYA to enhance the gain in the middle and high frequency band. The effects of the length and width of the first director on the antenna performance are analyzed, and final design parameters to obtain a gain over 7 dBi at 1.60-2.90 GHz band are obtained. A prototype of the proposed DDQYA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.57-3.00 GHz for a VSWR < 2, and measured gain ranges 7.1-7.8 dBi at 1.60-2.90 GHz band.

Design of a CPW-fed Double-Dipole Quasi-Yagi Antenna (CPW 급전 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1518-1523
    • /
    • 2018
  • A method for designing a DDQYA fed by a CPW is proposed in this paper. The proposed CPW-fed DDQYA consists of two series-connected strip dipoles, a ground reflector, and a strip-pair director. Instead of the conventional microstrip feed line in which the signal line is located on the substrate opposite to the antenna, a CPW is used because CPW is located on the same side with the antenna, and so the fabrication is easy. The strip-pair director is composed of two horizontally-separated strips, and it is added above the second dipole to enhance the gain in the high frequency region. A prototype of the proposed CPW-fed DDQYA is fabricated on an FR4 substrate. The fabricated antenna has a frequency band of 1.66-3.38 GHz(68.3%) for a voltage standing wave ratio < 2, and measured gain ranges 5.0-7.3 dBi over a frequency band of 1.60-2.90 GHz.

Quasi-Yagi Antenna for UHF RFID and GNSS Bands (UHF RFID 및 GNSS 대역용 준-야기 안테나)

  • Lee, Jong-Ig;Kim, Gun-Kyun;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.57-58
    • /
    • 2018
  • In this paper, we studied a design method for a quasi-Yagi antenna operating over a broad bandwidth covering the UHF RFID(902-928 MHz) and GNSS(1,164-1.605 MHz). The proposed antenna is composed of three elements(dipole, reflector, and director) and fed by a coplanar waveguide. To reduce its size, a balun is integrated inside the antenna, and the ends of both the dipole and reflector are bent. Broadband impedance matching was obtained by placing the director near to the dipole and loading a chip capacitor inside the antenna. The antenna, designed through simulations, was fabricated on an FR4 substrate with 0.8 mm thickness. The experiment results for the antenna characteristics agree very well with the simulation.

  • PDF

CPW-fed Quasi-Yagi Antenna for UHF RFID and GPS Bands (코플래너 도파관으로 급전되는 UHF RFID 및 GPS 대역용 준-야기 안테나)

  • Lee, Jong-Ig;Kim, Gun-Kyun;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.63-64
    • /
    • 2017
  • In this paper, we studied a design method for a coplanar waveguide-fed compact quasi-Yagi antenna for a dual band of the UHF RFID (915 MHz) and GPS (1.575 GHz). The proposed antenna is composed of three elements of a dipole, a reflector, and a director. To reduce its size, the ends of both the dipole and reflector are bent, the director is placed near to the dipole, and a balun is incorporated in the antenna. From some simulations, the proposed antenna using an FR4 substrate with 0.8 mm thickness was designed for the operations in the UHF RFID and GPS systems, and the antenna characteristics such as reflection coefficient, gain, and radiation patterns were examined.

  • PDF

Design of Compact Broadband CPW-fed Quasi-Yagi Antenna (CPW 급전 소형 광대역 준-야기 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.59-60
    • /
    • 2017
  • In this paper, we studied a design method for obtaining broadband property by loading a chip capacitor on a coplanar waveguide(CPW)-fed compact quasi-Yagi antenna(QYA). The proposed antenna is a three-element QYA with dipole, reflector, and director. To reduce the size, the ends of both dipole and reflector are bent, and balun is incorporated in the antenna. To improve impedance matching, the loading position and capacitance value of chip capacitor were determined. From some simulations, the proposed antenna using an FR4 substrate with a size of 90 mm by 90 mm was designed for the operation in a broadband covering the UHF RFID and GPS systems. The antenna showed a good performance with a broadband of 850-1,626 MHz(62.7%) for a VSWR ${\leq}2$, a gain ${\geq}3dBi$, and a frong-to-back ratio ${\geq}4.6dB$.

  • PDF