• Title/Summary/Keyword: 준정적 시험

Search Result 61, Processing Time 0.026 seconds

Structural Model Testing of Spillway Pier Subjected to Static Load (댐여수로 수문교각의 정적 거동 예측을 위한 구조 모형시험)

  • Lee Myung Kue;Jang Bong Seok;Lee Hyung Joan;Ha Ik Soo;Kim Hyung Soo;Koh Sung Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.115-118
    • /
    • 2005
  • In this study, small scale model test was performed to verify the ultimate load capacity of spillway pier structure under static load. The 1/20 scale test specimen was made of specially designed micro-concrete and wire mesh. From the test result, the cracking load of specimen was 10 tonf and the ultimate was 19tonf. From the similarity rule, cracking and ultimate load of prototype pier structure were predicted 4000 tonf, 7600 ton, respectively.

  • PDF

유비쿼터스 컴퓨팅을 위한 지능적인 사용자 위치 이동 학습 및 예측

  • 유지오;김경중;조성배
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.139-148
    • /
    • 2004
  • 사용자의 지리적 위치에 따른 서비스를 제공하는 위치기반서비스는 유비쿼터스 컴퓨팅의 중요한 응용으로 여러 위치 감지기술과 다양한 시험 및 상용 서비스들이 개발되어 왔다. 하지만 기존의 위치기반서비스는 단순히 위치와 서비스를 정적으로 연결하는 기법에 그치고 있어 서비스의 유연성이 떨어지는 한계가 있다. 이를 개선하기 위해 위치 정보로부터 고수준 정보를 추론하여 보다 지능적인 서비스를 제공하려는 연구들이 이루어지고 있다. 본 논문에서는 사용자의 위치이동 데이터를 학습하여 미래의 위치 이동 경로를 예측하는 기법을 제안한다. GPS(Global Positioning System)를 사용하여 수집된 시퀸스 데이터를 시퀸스 데이터 처리에 특화된 RSOM (Recurrent Self Organizing Map)을 사용하여 클러스터링하고 이를 마르코브 모델을 사용하여 학습하여 각 위치 이동 패턴 모델을 구축한다. 현재의 위치이동 패턴을 구축된 각 이동패턴 모델들과 비교하여 가장 유사한 위치 이동패턴으로 미래의 사용자이동을 예측한다. 제안한 위치이동 예측 기법을 평가하기 위해 실제 대학생의 생활을 기반으로 하여 GPS 데이터를 대학 캠퍼스 상에서 수집하고 이를 이용하여 제안한 방법의 학습 및 예측 성능을 평가한다. 그 결과 제안한 방법을 사용하여 사용자의 미래의 위치이동경로를 예측하는 것이 가능하고 불확실한 상황에서도 유연하게 예측을 수행함을 확인하였다.

  • PDF

Effect of Change in Water Content and NCO Index on the Static Comfort of Polyurethane Seat Foam Pad for Automobiles (물 함량과 NCO Index 변화가 자동차용 폴리우레탄 시트 폼 패드의 정적 안락감에 미치는 영향 고찰)

  • Lee, Byoung Jun;Lee, Sung Hoon;Choi, Kwon Yong;Kim, Sang-bum
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • In this study, we identified how the water content change in various NCO index affects the static comfort of polyurethane seat foam pad for automobiles. In order to identify factors that affect the static comfort, a static load test was performed using UTM to plot a hysteresis curve. The hardness of the foam when it was modified by 25, 65%, hysteresis loop area, hysteresis loss (%), and Sag factor were also obtained. By measuring the swelling ratio, it was confirmed that, as the water content increased in a fixed NCO index, the hardness and crosslinking density increased while the restoring force decreased due to the increase of urea bond. Also the Sag factor decreased due to the increase of surface hardness. As the NCO index increased in a fixed water content, the urethane and urea bond reacted more with isocyanate, leading to an increase in hardness and decrease in restoring force.

Dynamic Mode Analysis of Thin Walled Closed Section Beams under Warping Conditions (Warping 조건하에서 박판 폐단면 보의 동적 모드 해석)

  • Yu, Hwan-Shin;Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.367-374
    • /
    • 2012
  • A dynamic simulation and test of frame with thin walled closed section beams considering warping conditions have been performed. When a beam is subjected under torsional moment, the cross section will deform an warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. This paper presents that an warping restraint factor in finite element model effects the behavior of beam deformation and dynamic mode shape. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame.

Strength of sandwich-to-laminate single-lap bonded joints in elevated temperature and wet condition (샌드위치와 적층판을 접착한 단일겹침 체결부의 고온습도 강도특성 연구)

  • Choi, Bae-Hyun;Kweon, Jin-Hwe;Choi, Jin-Ho;Shin, Sang-Jun;Song, Min-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1115-1122
    • /
    • 2010
  • The main objective of this study is to experimentally investigate the effect of adhesive thickness and environmental conditions on the failure and strength of sandwich-to-laminate bonded joints. Three different adhesive thicknesses (t=0.2, 2 and 4 mm) and two different environmental conditions were considered. Environmental conditions include the RTD(room temperature and dry condition) and ETW(elevated temperature and wet condition). Test results show as the adhesive thickness increases from 0.2 mm to 2 and 4 mm, the joint strength decreases 16 and 30%, respectively. Regarding the effect of environmental conditions, except for one case, the joint strength in the ETW conditions turned out to be 12% higher than those in the RTD conditions. In the joints with adhesive thickness of 0.2 mm, remarkable difference from RTD condition was not found.

Enhancement of SNUF Active Trailing-edge Flap Blade Mechanism Design (SNUF뒷전 플랩 블레이드 메커니즘의 설계 개선)

  • Natarajan, Balakumaran;Eun, WonJong;Shin, SangJoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.645-653
    • /
    • 2013
  • Seoul National University flap(SNUF) blade is a small-scale rotor blade incorporating a small trailing-edge flap control surface driven by piezoelectric actuators at higher harmonics for vibration attenuation. Initially, the blade was designed using two-dimensional cross-section analysis and geometrically exact one-dimensional beam analysis, and its material configuration was finalized. A flap-deflection angle of ${\pm}4^{\circ}$ was established as the criterion for enhanced vibration reduction based on an earlier simulation. The flap-linkage mechanism was designed and static bench tests were conducted for verifying the performance of the flap-actuation mechanism. Different versions of test beds were developed and tested with the designed flap and the selected APA 200M piezoelectric actuators. Through significant improvements, a maximum deflection of ${\pm}3.7^{\circ}$ was achieved. High-frequency experiments were conducted for evaluating the performance, and the transfer function of the test bed was determined experimentally. With the static tests almost complete, the rotor power required for testing the blade in a whirl tower (centrifugal environment) was calculated, and further preparations are underway.

Structural Design and Verification of MEMS Solid Thruster for CubeSat Application (큐브위성 탑재를 위한 MEMS 고체 추력기의 구조설계 및 검증)

  • Jang, Su-Eun;Han, Sung-Hyeon;Kim, Tae-Gyu;Lee, Jong-Kwang;Jang, Tae-Seong;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.432-439
    • /
    • 2015
  • MEMS solid thruster module is composed of solid thruster and its control board. It was developed for the purpose of an academic research. Therefore, thermo-mechanical design and verification for space usage were not considered in the design phase. To mount it on a cube satellite without any design modification, technical efforts at the system level structure design is required. In this study, we proposed a structural design concept to mount the MEMS thruster module by using brackets for guaranteeing structure safety under launch loads and easier mating and de-mating of MEMS thruster module during test phase. The effectiveness of the design has been verified through structural analysis and vibration test. In addition, electrical connection method using spring pins between MEMS thruster and control board is effective for guaranteeing the structural safety under launch vibration loads.

Estimation of Aircraft Stability Derivatives Using a Subsonic-supersonic Panel Method (아음속 초음속 패널법을 이용한 항공기 안정성 미계수 예측)

  • Gong, Hyo-Joon;Lee, Hyung-Ro;Kim, Beom-Soo;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.385-394
    • /
    • 2012
  • A computer program that can estimate static, dynamic stability and control derivatives using a subsonic-supersonic panel method is developed. The panel method uses subsonic-supersonic source and elementary horse shoe vortex distributions, and their strengths are determined by solving the boundary condition approximated with a thin body assumption. In addition, quasi-steady analysis on the body fixed coordinate system allows the estimation of damping coefficients of aircraft 3 axes. The code is validated by comparing the neutral point, roll and pitch damping of delta wings with published analysis results. Finally, the static, dynamic stability and control derivatives of F-18 are compared with experimental data as well as other numerical results to show the accuracy and the usefulness of the code.

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

Determination of Strain Energy Function of Rubber Materials Considering Stress Softening Behavior (응력연화거동을 고려한 고무 재료의 변형률 에너지 함수 결정)

  • Kim, W.S.;Hong, S.I.
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.168-176
    • /
    • 2007
  • When the rubber vulcanizates reinforced with carbon black or silica are subjected to cyclic loading from its virgin state, the stress required on reloading is less than that on the initial loading. This stress softening phenomenon is referred to as the Mullins effect. The strain energy function of rubber vulcanizates was investigated using theory of pseudo-elasticity incorporated damage parameter that Ogden and Roxburgh have proposed to describe the damage-induced stress softening effect in rubber-like solids. The quasi-static cyclic loading test was performed using the NR-SBR vulcanizates reinforced with carbon black, and then the effect of a damage parameter to stress-strain curve in reloading and subsequent reloading paths was studied. The strain energy function of the rubber vulcanizates with a different filler content was also evaluated.