• Title/Summary/Keyword: 준정적 시험

Search Result 61, Processing Time 0.027 seconds

Behavior of Solid Circular RC Piers without Seismic Detailing Subjected to Cyclic Lateral Load (수평 반복하중을 받는 비내진상세 RC 중실원형교각의 거동특성)

  • 김재관;김익현;임현우;전귀현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.83-95
    • /
    • 2001
  • Scale model tests were performed to investigate the seismic behavior and capacity of reinforced concrete piers that were not detailed for seismic load. The prototype pier is of solid circular section. Additional lateral reinforcing bars were not provided that might be required for the confinement. Two kinds of reinforcement details are considered for the vertical longitudinal reinforcing bars: lap spliced and continuous. In the case of lap spliced model all the longitudinal bars were lap spliced at the same height in the bottom plastic hinge zone. Three specimens were constructed and subjected to quasi-static cyclic lateral loading while the vertical load held constant. Non-ductile failure modes were observed in the test of lap spliced models but limited ductile behavior was observed in the test of a continuous longitudinal reinforcement model.

  • PDF

Static and Fatigue Flexural Tests of Ductile High-performance Fiber Reinforced Cementitious Composites (고인성 섬유보강 콘크리트의 정적 및 피로 휨시험)

  • Shin, Kyung-Joon;Lee, Do-Keun;Lee, Kyoung-Chan;Kim, Sung-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.602-608
    • /
    • 2021
  • Recently, research and development has been conducted to impart high performance and functionality to concrete materials by mixing various reinforcing materials into the matrix. Ductile fiber reinforced concrete using a large amount of fibers shows a distributed multiple cracking behavior, and various studies are being conducted on this material. However, research is focused on static behavioral analysis but studies on cyclic behaviors are not sufficient. In this study, beams were made of ductile fiber reinforced concrete with various fiber contents, and static and fatigue flexural tests were performed. As a result, the effect of fiber content on the flexural behavior was analyzed. Also, the applied load level and fatigue life relationship of ductile fiber reinforced concrete was proposed. Concrete with high ductile property could be achieved with a fiber content of 2%. When 0.5% fiber was more added, the maximum flexural strength was similar, but the flexural toughness is nearly doubled. On the other hand, there was no significant difference in the fatigue life of these two mixtures.

Seismic Performance Enhancement of Reinforced Concrete Bridge Piers wrapped with Prestressed Steel Jacket by the Quasi-Static Test (프리스트레스트된 강판으로 보강된 철근콘크리트 교각의 준정적 실험에 의한 내진 성능 향상 연구)

  • Choel, Beak-Min;Chung, Young-Soo;Choi, Eun-Soo;Yang, Dong-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.77-80
    • /
    • 2008
  • Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. This research aims at evaluating the seismic performance of reinforced concrete bridge piers with lap-spliced longitudinal steels, which were strengthened with prestressed steel jacket in the plastic hinge region. Quasi-static test was used to investigate the seismic performance enhancement of RC test specimens. Conventional method applied mortar grouting inside steel jacket, but this research did not apply mortar grouting inside steel plate. Four test specimens in an aspect of 3.5 were constructed with 400 mm in diameter and 1600 mm in height. Test parameters are the lap splice of longitudinal reinforcing steels and thickness of steel jacket.

  • PDF

Advanced Evaluation of In-situ Strength using CPT results (콘관입시험을 이용한 지반강도의 상세평가해석)

  • Lee, Jun-Hwan;Kang, Byung-Jun;Kyung, Doo-Hyun;Hong, Jung-Mu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.111-116
    • /
    • 2008
  • 콘관입시험(CPT)은 의사정적상태로 수행되는 현장시험방법으로서, 각종 기초구조물의 설계와 더불어 지반조사를 위한 대표적 방법으로 널리 적용되고 있다. 본 논문에서는 콘관입시험결과를 이용하여 사질토 지반에 있어서 지반강도의 상세평가법을 제안하고자 한다. 사질토의 강도는 상대밀도와 응력상태에 따라 변하는 상태의존적 성질을 나타내고 있으나, 이러한 역학적 성질은 실험실 내에서만 측정이 가능한 상태이며, 현장강도의 경험식이나, 대표강도의 평가만이 제안되어 있는 실정이다. 따라서 본 연구에서는 대표적 현장시험방법인 CPT를 이용하여 다이러턴시 특성 평가가 가능하며, 다양한 지반특성치가 반영될 수 있는 현장강도의 상세평가법을 제안하고자 한다. 이를 위해 실내삼축압축시험을 통해 얻어진 강도특성과 역학특성치들을 분석하였으며, 이를 토대로 수정 다일러턴시 평가법을 제안하였다. 제안된 방법의 검증을 위해 가압토조를 이용한 콘관입시험을 수행하였으며, 측정값과의 비교분석을 수행하였다.

  • PDF

Strength Degradation and Failure of Circular RC Bridge Columns with Longitudinal Steel Connection under Cyclic Lateral Load (반복횡하중을 받는 철근콘크리트 원형 교각의 축방향철근 연결상세에 따른 강도저감 및 파괴거동)

  • Lee Jae-Hoon;Jung Chul-Ho;Ko Seong-Hyun;Son Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.111-124
    • /
    • 2004
  • This research is a part of a research program to verify the seismic performance of circular reinforced concrete bridge columns with respect to longitudinal steel connection details under cyclic lateral load. A total of 21 column specimens were constructed and tested. Main variables in this test program were longitudinal steel connection details(continuous, lap-spliced, and mechanically connected), confinement steel ratio, and axial force ratio, etc. The test results of the columns with different longitudinal steel connection details showed different failure mode, strength degradation, and seismic performance. From the quasi-static test, it was found that the columns with all longitudinal reinforcement lap-spliced showed significantly reduced ductility. However, seismic performance of the columns with half of longitudinal reinforcement lap-spliced showed limited ductility but much more ductile behaviour than the columns with all longitudinal reinforcement lap-spliced. It was also found that the seismic performance, failure mode and strength degradation of columns with mechanical connected longitudinal reinforcement were similar to those of columns with continuous longitudinal reinforcement.

Seismic Performance Evaluation of Full-size Non-seismic Circular RC Bridge Piers with Longitudinal Steel Lap splice (주철근 겹침이음된 실물 비내진 원형 교각의 내진성능평가)

  • Chung Young-Soo;Lee Dae-Hyung;Ko Seong-Hyun;Lee Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.697-707
    • /
    • 2004
  • Most bridge piers were practically designed and constructed with lap spliced longitudinal reinforcing steels before the 1992 seismic design provisions of Korea Bridge Design Specification were implemented. It has been known that lap splice of longitudinal reinforcement in the plastic hinge region is not desirable for seismic performance of RC bridge piers. The objective of this research is to evaluate the seismic performance of existing circular reinforced concrete bridge piers by the Quasi-static test and to propose the need of seismic retrofit of existing bridge piers through the damage level. Test specimens were nonseismically designed with the aspect ratio 4.0 which could induce the flexural failure mode. It was confirmed from this experiment that significant reduction of seismic performance was observed for test specimens with lap spliced longitudinal reinforcing steels. Pertinent seismic retrofit was determined to be needed for existing RC bridge piers with the lap-spliced of $50\%$ longitudinal reinforcing steels.

Pseudodynamic testing method (유사동적 실험기법)

  • 이동근;김남식
    • Computational Structural Engineering
    • /
    • v.5 no.2
    • /
    • pp.12-17
    • /
    • 1992
  • 지진하중에 대한 내진성능을 평가하기 위하여 유사동적 실험기법은 다양한 시험체를 대상으로 응용되어 왔다. 특히 실물크기의 시험체에 대한 실험이 가능하다는 특징 때문에 substructuring기법을 도입하여 부분구조물에 대한 유사동적실험이 활발히 진행되고 있으며, substructuring기법에 사용되는 수치적분 알고리즘의 효율성 및 새로운 보완이 필요한 것으로 판단된다. 근래에 구조물의 진동제어(vibration control)를 목적으롤 개발된 rubber bearing, viscous damper 등은 두드러진 감쇠특성을 갖고 있는 장치로서 strain-rate 효과에 비교적 민감하다. 지금까지의 유사동적실험을 준정적으로 실험이 수행되었으나, 이러한 장치가 설치된 구조물의 진동제어 성능실험을 위해서는 가능한 실시간(real time)에 가까운 실험 진행속도를 갖는 것이 유리하다. 최근에 Nakashima는 digital servomechanism을 이용하여 실시간에 가까운 실험속도의 유사동적 실험을 수행하였으며, 이에 대한 지속적인 연구를 진행하고 있다.

  • PDF

Evaluation of Point Bearing Capacity using Field Model Pile Test (현장 축소모형 말뚝 시험을 이용한 선단지지력 예측)

  • Lee, Chang-Ho;Lee, Woo-Jin;Jeong, Hun-Jun;Han, Shin-In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2005
  • In many practical cases, design methods of pile have been used mainly semi empirical bearing capacity equations. It can be done that confirmation of pile bearing capacities through using of dynamic and static tests during constructing or after constructions. If a prediction of layered point pile bearing capacity could be done through simple tests during field investigation, it could be done that more reliable design of pile than a prediction of using semi empirical equations or static formulations. This paper suggests a method to estimated point bearing capacity during in-situ investigation by using the dynamic rod model pile and verifies the point bearing capacity compare with results of static pile load tests. From test results, the unit ultimate point bearing capacities are relatively similar through a dynamic rod model pile tests and static pile load tests. The unit ultimate point bearing capacity by using N value is shown about 50 % value of measured unit ultimate point bearing capacity from field test result and the prediction of the unit ultimate point bearing capacity by using N value is shown very conservative, illogical and uneconomical pile designs.

  • PDF

Study on the Axial Crushing Behaviors of UD Kevlar/Epoxy and Carbon-Kevlar/Epoxy Composite Tubes (단방향 케블라/에폭시, 탄소-케블라/에폭시 복합재 튜브의 축방향 압괴 거동에 대한 연구)

  • Kim, Hyung-Uk;Kim, Jung-Seok;Jung, Hyun-Seung;Yoon, Hyuk-Jin;Kwon, Tae-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.271-277
    • /
    • 2010
  • In this paper, a numerical model for a Kevlar/Epoxy and Carbon-Kevlar/Epoxy tube used as an energy absorbing component has been developed and then results have been verified through experiment. The 2D shell element and Chang-Chang failure criterion of LS-DYNA that is commercial explicit FE code was used. Mechanical material properties for the model were obtained by material testing in advance. The numerical results were compared with quasi-static test results under axial compressive loading at 10mm/min. From the results, in the case of the Kevlar/Epoxy tube, load-crushed displacement curves were very close to the experiments and SEA (specific energy absorption) shows a good agreement with experimental one within less than 6%. However, the Carbon-Kevlar/Epoxy tube shows some differences with the experimental results.

Study of Structural Stability and Seismic Performances of 4-Way Sway Prevention Brace (4방향흔들림방지버팀대의 구조 안정성 및 내진 성능 연구)

  • O, Soo Un;Lee, Hang Jun;Choa, Sung Hoon
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.646-659
    • /
    • 2022
  • Purpose: In this study, we developed a 4-way sway prevention brace that efficiently reduces the installation area and has excellent stability and seismic performance compared to the conventionl sway prevention brace used in existing firefighting facilities. The performance and reliability of the developed 4-way way prevention brace were analyzed by the tensile, compression tests and seismic tests. Method: As the static test, 4-way sway prevention braces were installed on the horizontal and vertical pipes to perform the tensile and compression tests based on the KFI certification standard and the maximum movement was measured at the rated load. As a dynamic test, 4-way sway prevention braces were installed in the pipes filled with water, and the test response spectrum to the input excitation wave were measured through the acceleration sensors. After the seismic tests, separation, failure, and local deformation of the pipes, and 4-way sway prevention braces were not observed. Result: The results of the tensile and compression tests indicated that the maximum movement of the pipe during tension and compression was 50% to 70% or less compared to the certification values, indicating that the performances of the 4-way sway prevention braces were very excellent. The results of the the seismic tests indicated that the test response spectrum of the 4-way sway prevention braces is within the required response spectrum. Conclusion: In this study, it was found that the 4-way sway prevention braces satisfied the KFI certification standard and were superior compared to the existing sway prevention brace in terms of the stability, cost, and installation area.