• Title/Summary/Keyword: 준정적실험

Search Result 88, Processing Time 0.024 seconds

Seismic Characteristics of Hollow Rectangular Sectional Piers with Reduced Lateral Reinforcements (횡방향철근이 감소된 중공사각단면 교각의 내진거동 특성)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.51-65
    • /
    • 2009
  • The seismic design concept of RC bridges is to attain the proper ductility of piers, yielding a ductile failure mechanism. Therefore, seismic design force for moment is determined by introducing a response modification factor (R), and lateral reinforcements to confine core concrete are specified in the current design code. However, these design provisions have irrationality, which results in excessive amounts of lateral reinforcements for columns in Korea, which are generally designed with large sections. To improve on these provisions, a new design method based on seismic performance has been proposed. To apply this to hollow sectional columns, however, further investigations and improvements must be performed, due to the different seismic behaviors and confinement effects. In this study, hollow sectional columns with different lap-splice of longitudinal bars and lateral reinforcements have been tested. Seismic characteristics and performance were investigated quantitatively. These research results can be used to derive a performance-based design for hollow sectional columns.

Quasi-Static and Shaking Table Tests of Precast Concrete Structures Utilizing Clamped Mechanical Splice (가압고정 기계적이음을 활용한 프리캐스트 콘크리트 구조물의 준정적 및 진동대 실험)

  • Sung, Han Suk;Ahn, Seong Ryong;Park, Si Young;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • A new clamped mechanical splice system was proposed to develop structural performance and constructability for precast concrete connections. The proposed mechanical splice resists external loading immediately after the engagement. The mechanical splices applicable for both large-scale rebars for plants and small-scale rebars for buildings were developed with the same design concept. Quasi-static lateral cyclic loading tests were conducted with reinforced and precast concrete members to verify the seismic performance. Also, shaking table tests with three types of seismic wave excitation, 1) random wave with white noise, 2) the 2016 Gyeongju earthquake, and 3) the 1999 Chi-Chi earthquake, were conducted to confirm the dynamic performance. All tests were performed with real-scale concrete specimens. Sensors measured the lateral load, acceleration, displacement, crack pattern, and secant system stiffness, and energy dissipation was determined by lateral load-displacement relation. As a result, the precast specimen provided the emulative performance with RC. In the shaking table tests, PC frames' maximum acceleration and displacement response were amplified 1.57 - 2.85 and 2.20 - 2.92 times compared to the ground motions. The precast specimens utilizing clamped mechanical splice showed ductile behavior with energy dissipation capacity against strong motion earthquakes.

Shake Table Response and Analysis of RC Bridge Piers with Lap-Spliced Steel under NFGM (주철근 겹침이음된 RC교각의 근단층지반운동에 대한 진동대 응답과 분석)

  • Chung, Young-Soo;Park, Chang-Young;Hong, Hyun-Ki;Park, Ji-Ho;Shim, Chang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.451-458
    • /
    • 2008
  • The near-fault ground motion (NFGM) is characterized by a single long period velocity pulse of large magnitude. NFGM's have been observed in recent strong earthquakes, Izmit Turkey (1999), Kobe Japan (1995), Northridge USA (1994), etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the near-fault ground motion (NFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this study is to investigate and analyze the effect of near-fault ground motions on reinforced concrete (RC) bridge piers with lap-spliced longitudinal reinforcing steels. The seismic performance of four RC bridge piers under near-fault ground motions was investigated on the shake table. In addition, a RC bridge pier is subjected to pseudo-dynamic loadings. Test results showed that large residual displacements were observed in RC bridge piers under NFGM. RC specimens on the shake table failed at relatively low displacement ductility, compared with the displacement ductility of RC bridge pier subjected to pseudo-dynamic loadings.

Seismic Performance Evaluation of Full-Sized RC Bridge Piers with tap-Spliced longitudinal Steels according to Lateral Confinement (주철근 겹침이음된 실물교각의 횡구속 정도에 따른 내진성능 평가)

  • Park Chang-Kyu;Chung Young-Soo;Ko Seong-Hyun;Lee Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.687-696
    • /
    • 2004
  • It has been known that practically unavoidable lap splices of longitudinal reinforcement in the plastic hinge region have a bad effect on the seismic performance of reinforced concrete bridge columns. Lap splices were usually located in the plastic hinge region of most bridge columns designed before the implementation of the new seismic design provisions of 1992 Korea Bridge Design specification. The objective of this research is to evaluate the seismic performance of full-sized reinforced concrete bridge piers with lap splice of longitudinal reinforcement in the plastic hinge region, and to develop an appropriate lateral confinement concept of RC bridge columns with lap-spliced longitudinal steels in low or moderate seismicity region. Eight test specimens in the aspect ratio of 4.0 were made with three types of lap splicing, two levels of confinement steel ratios and two types of tie configurations. It was confirmed from the Quasi-Static test that displacement ductility ratios were significantly reduced for nonseismic test columns with lap spliced longitudinal steels but were satisfied the seismic requirement for limited ductile design specimens. As a conclusion, pertinent lateral confinement content was proposed for the seismic. performance of RC bridge piers with $50\%$ lap-spliced longitudinal reinforcing steels in low or moderate seismicity region.

Structural Behavior of the Reinforced Concrete Filled GFRP Tube (GFRP 보강 철근콘크리트 합성부재의 구조적 거동)

  • Lee, Seung-Sik;Joo, Hyung-Joong;Kang, In-Kyu;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.44-51
    • /
    • 2010
  • Recently, to solve the problems associated with the neutralization and corrosion of reinforced concrete compression members, the structural configurations such as CFFT (Concrete Filled GFRP Tube) and RCFFT (Reinforced Concrete Filled GFRR Tube) have been developed and applied to main members of civil engineering structure. These members can increase structural performance in terms of structural stability, ductility as well as chemical resistance compared with conventional concrete structural members. Many researches in numerous institutions to predict the load carrying capacity of the concrete compression member strengthened with FRP materials have been conducted and they have been suggested an equation for the prediction of the load carrying capacity of the members. Through the review of the research results, it was found that their results are similar each other. Moreover, it was also found that the results are not directly applicable to our specimens since the results are largely depended upon the member configurations. Also, since the accurate design criteria for the RC members strengthened with FRP such as RCFFT have not been established properly, relevant theoretical and experimental investigations must be conducted for the application to the practical structures. In this study, structural behavior of RCFFT was evaluated through compressive and quasi-static flexural tests in order to formulate design criteria for the structural design. In addition, the RCFFT members were also investigated to examine their confinement effect and the equations capable of estimating the compressive ultimate strength and flexural stiffness of the RCFFT members were proposed.

FEA for RC Beams Partially Flexural Reinforced with CFRP Sheets (CFRP 시트로 부분 휨 보강된 철근콘크리트 보의 유한요소해석)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Byeong Cheol;Kim, Jaehwan;Jung, Kyu-San
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2020
  • A CFRP sheet has been applied as a structural reinforcement in the field, and various studies are conducted to evaluate the effect of CFRP sheets on reinforced concrete. Although many experiments were performed from previous studies, there are still limitations to analyze structural behaviors with various parameters in experiments directly. This study shows the FEA on structural behaviors of RC beams reinforced with CFRP sheets using ABAQUS software. To simulate debonding failure of CFRP sheets which is a major failure mode of RC beam with CFRP sheets, a cohesive element was applied between the bottom surface of RC beam and CFRP sheets. Both quasi-static method and 2-D symmetric FE model technique were performed to solve nonlinear problems. Results obtained from the FE models show good agreements with experimental results. It was found that reinforcement level of CFRP sheets is closely related to structural behavior of reinforced concrete including maximum strength, initial stiffness and deflection at failure. Also, as over-reinforcement of CFRP sheets could give rise to the brittle failure of RCstructure using CFRP sheets, an appropriate measure should be required when installing CFRP sheets in the structure.

Behavior of Steel Fiber-Reinforced Concrete Exterior Connections under Cyclic Loads (반복하중을 받는 강섬유 보강 철근콘크리트 외부 접합부의 거동 특성)

  • Kwon, Woo-Hyun;Kim, Woo-Suk;Kang, Thomas H.K.;Hong, Sung-Gul;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.711-722
    • /
    • 2011
  • Beam-column gravity or Intermediate Moment frames subjected to unexpected large displacements are vulnerable when no seismic details are provided, which is typical. Conversely, economic efficiency of those frames is decreased if unnecessary special detailing is applied as the beam and column size becomes quite large and steel congestion is caused by joint transverse reinforcement in beam-column connections. Moderate seismic design is used in Korea for beam-column connections of buildings with structural walls, which are to be destroyed when the unexpected large earthquake occurs. Nonetheless, performance of such beamcolumn connections may be substantially improved by the addition of steel fibers. This study was conducted to investigate the effect of steel fibers in reinforced concrete exterior beam-column connections and possibility for the replacement of some joint transverse reinforcement. Ten half-scale beam-column connections with non-seismic details were tested under cyclic loads with two cycles at each drift up to 19 cycles. Main test parameters used were the volume ratio of steel fibers (0%, 1%, 1.5%) and joint transverse reinforcement amount. The test results show that maximum capacity, energy dissipation capacity, shear strength and bond condition are improved with the application of steel fibers to substitute transverse reinforcement of beam-column connections. Furthermore, several shear strength equations for exterior connections were examined, including the proposed equation for steel fiber-reinforced concrete exterior connections with non-seismic details.

Numerical Simulation for the Quasi-static Behavior of Superelastic Nitinol Shape Memory Alloys (SMAs) (초탄성 니티놀 형상기억합금의 준정적 거동에 대한 수치해석적 재현)

  • Hu, Jong Wan
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.493-501
    • /
    • 2015
  • Superelastic shape memory alloys (SMAs) are metallic materials that can automatically recover to their original condition without heat treatment only after the removal of the applied load. These smart materials have been wildly applied instead of steel materials to the place where large deformation is likely to concentrate. In spite of many advantages, superelastic SMA materials have been limited to use in the construction filed because there is lack of effort and research involved with the development of the material model, which is required to reproduce the behavior of superelastic SMA materials. Therefore, constitutive material models as well as algorithm codes are mainly treated in this study for the purpose of simulating their hysteretic behavior through numerical analyses. The simulated curves are compared and calibrated to the experimental test results with an aim to verify the adequacy of material modeling. Furthermore, structural analyses incorporating the material property of the superelastic SMAs are conducted on simple and cantilever beam models. It can be shown that constitutive material models presented herein are adequate to reliably predict the behavior of superelastic SMA materials under cyclic loadings.