• Title/Summary/Keyword: 준정적실험

Search Result 88, Processing Time 0.027 seconds

Failure Behavior of Hollow Circular RC Column According to the Spacing of Spirals (나선철근 간격에 따른 중공 원형 RC 기둥의 파괴거동)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.46-55
    • /
    • 2016
  • Three small scale hollow circular reinforced concrete columns(4.5 aspect ratio) were tested under cyclic lateral load with constant axial load. Diameter of section is 400 mm, hollow diameter is 200 mm. The selected test variable are transverse steel ratio. Volumetric ratio of spirals of all the columns is 0.302~0.604% in the plastic hinge region. It corresponds to 45.9~91.8% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The final objectives of this study are to provide quantitative reference data and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, steel fracture, etc. In this paper, describes mainly failure behavior, strength degradation behaviour, displacement ductility of circular reinforced concrete bridge columns with respect to test variables.

Design of Precast Circular Piers with Prestressing Bars (강봉으로 긴장한 프리캐스트 원형교각의 설계)

  • Shim, Chang-Su;Chung, Chul-Hun;Yoon, Jae-Young;Kim, Cheol-Hwan;Lee, Yong-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.121-124
    • /
    • 2008
  • Fast construction of bridge substructures is a new trend of bridge design. A precast pier system with bonded prestressing bars was proposed. In this paper, quasi-static tests on precast prestressed piers were conducted to evaluate the seismic behavior of the precast piers with bonded prestressing bars. In order to strengthen the shear strength of the joints between column segments, steel tubes filled with mortar were used. Displacement ductility and energy dissipation capacity of the precast piers were evaluated. The suggested precast pier system showed better seismic performance than the required ductility. Based on the research results, an example bridge pier for light-railway lines was designed and design considerations were discussed.

  • PDF

Evaluation of Structural Performance of Precast Prefabricated Bridge Column using Nonlinear Finite Element Analysis (비선형 유한요소해석을 이용한 조립식 교각의 성능 평가)

  • Chung, Chul-Hun;Yun, Yeon-Suk;Whang, Eun-Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.383-390
    • /
    • 2008
  • A Precast Prefabricated Bridge Column using steel tube and prestressing bar was proposed for the application of precast method on substructure. A column specimen designed by the proposed bridge column system was made and performed a quasi-static test. The failure mode appeared to be a flexural failure and there is no damage on column segment connection. And it is good use of the self-centering ability by prestressing force. Test results showed that a column specimen satisfy the earthquake specification, and the structural stability was verified. Nonlinear finite element analysis was performed and compared with the test results. Force-displacement relation and location of crack from the analysis results were compared with the test results and it agreed well. The quantitative analysis was also performed by a parametric study using this modeling technique.

Damage Estimation for Offshore Tubular Members Under Quasi-Static Loading (준정적하중(準靜的荷重)을 받는 해양구조물(海洋構造物)의 원통부재(圓筒部材)에 대한 손상예측(損傷豫測))

  • Paik, Jeom-K.;Shin, Byung-C.;Kim, Chang-Y.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.81-93
    • /
    • 1989
  • The present study attempts to develop the theoretical model for the damage estimation of offshore tubular members which are subjected to the accidental impact loads due to collision, falling objects and so on. For the reasons of the simplicity of the problem being considered, however, this paper postulates that the accidental load can be approximated to be the quasi-static one, in which dynamic effects are negelcted. Based upon the theoretical and experimental results which are obtained from the present study as well as the existing literature, the load-displacement relations taking the interaction effect between the local denting and the global bending deformation into account are presented in the explicit form when the concentrated lateral load acts on the tubular member whose end condition is supposed to be rotation ally free and axially restrained, in which membrane forces develop. Thus, the practical estimation of damage deformation for the local denting and the global bending damage of tubular members against the accidental loads is possible and also the collision absorption capability of the member can be calculated by performing the integration of the area below the given load-displacement curves, provided that all the energy is dissipated to the deforming the member itself.

  • PDF

Evaluation of Seismic Performance of Beam-Column Connections Using Minimally Spaced Headed Reinforcements (근접 배치된 확대머리 철근의 보-기둥 접합부 내진 성능 평가)

  • Cho, Ah Sir;Shin, Hyeong-Yeop;Jeong, Seung Yong;Kang, Thomas H.K.;Kim, Woosuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • To resolve the conservative requirements for clear headed-bar spacing in KBC 2016 and ACI 318-08, two 2/3-scale exterior beam-column connections were tested under cyclic seismic loading. The seismic tests primarily explored the effect on their seismic performance of using (a) small clear spacings and (b) multiple layers of headed reinforcements in the beam. Also, the previous test data were thoroughly analyzed. It was concluded that the clear bar spacing of 2db or the use of two bar layers might be permitted for headed reinforcements embedded in exterior beam-column connections.

Non-explosive separation device using screw jack mechanism (나사잭 메커니즘을 이용한 비폭발식 분리장치)

  • Park, Hyun-Jun;Lee, Min-Su;Jo, Jae-Wook;Kim, Byung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.321-326
    • /
    • 2010
  • The non-explosive release device using jack mechanism is designed and fabricated for the small satellite. As a triggering actuator for the release device, a piezo rotory motor with torque of more than $1.7kgf{\cdot}cm$ is employed to guarantee stable activation. For performance tests of separation device, we conducted release time test, preload test and shock test. The device was operated within 1.172sec and activated stably under load of 45kgf. Maximum shock was measured as 18G that is much less than the pyro-separation device produces. We confirmed the possibility as a satellite separation device through above presented tests.

Shear Strength and Failure Mode of Architectural Masonry Walls (내진보강된 치장조적벽의 파괴특성과 전단강도)

  • Jin, Hee-Yong;Han, Sang-Whan;Park, Young-Mi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.89-92
    • /
    • 2008
  • This study investigates the shear behavior of architectural masonry veneer wall reinforced with specific reinforcement details proposed by this study. For this purpose, experimental tests were conducted using one un-reinforced masonry(URM) wall specimen and three reinforced masonry(RM) wall specimens under quasi static cyclic loads. Un-reinforced(plain) masonry wall is expressed that behavior and failure mode are different for aspect ratio(L/H) and axial compressive force. The test variables are wall aspect ratio and presence of reinforcement. These specimens are masonry structure for architectural clading that is not to exist the axial compressive force. thus the axial compressive force is excepted from test variable. Test result, Behavior of specimens are dominated over rocking mode, but final failure modes are combined with different behaviors. And FEMA273 has proposed the equation of shear strength of masonry pier subjected to in-plane loading. Shear strength equations are classified four types of failure mode that is Rocking, and Toe-Crushing, Bed-Joint-Sliding and Diagonal-Tension. FEMA273 equations predict the behavior modes well, but shear strength is shown in different result.

  • PDF

Seismic Performance Evaluation of 3 Story OMRCF Based on Scaled Model Testing (축소모델실험에 의한 철근콘크리트 3층 보통모멘트골조의 구조 성능 평가)

  • Han Sang-Whan;Kwon Gun-Up
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.673-678
    • /
    • 2005
  • ACI 318 (1999) defines three types of moment frames: Ordinary Moment Resisting Concrete Frame (OMRCF), Intermediate Moment Resisting Concrete Frame (IMRCF), and Special Moment Resisting Concrete Frame (SMRCF). OMRCF is the most popular type of moment frame in mild seismic zones that requires the least detail and design requirements. This study focuses on the seismic performance of Ordinary Moment Resisting Concrete Frames (OMRCF) designed only for gravity loads. For this purpose a 3-story OMRCF was designed in compliance with the minimum design requirements in ACI 318 (1999). An one third 3 story specimen was made and tested. For scaled model, the similitude law of true replica was applied. The specimen was loaded with quasi-static reversed cyclic lateral loading. The overall behavior of OMRCF is quite stable without abrupt strength degradation. It is found that tested frame has the base shear strength larger than the design base shear for seismic zone 1, 2A and 2B calculated using UBC 1997.

Strength Degradation and Failure of Circular RC Bridge Columns with Longitudinal Steel Connection under Cyclic Lateral Load (반복횡하중을 받는 철근콘크리트 원형 교각의 축방향철근 연결상세에 따른 강도저감 및 파괴거동)

  • Lee Jae-Hoon;Jung Chul-Ho;Ko Seong-Hyun;Son Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.111-124
    • /
    • 2004
  • This research is a part of a research program to verify the seismic performance of circular reinforced concrete bridge columns with respect to longitudinal steel connection details under cyclic lateral load. A total of 21 column specimens were constructed and tested. Main variables in this test program were longitudinal steel connection details(continuous, lap-spliced, and mechanically connected), confinement steel ratio, and axial force ratio, etc. The test results of the columns with different longitudinal steel connection details showed different failure mode, strength degradation, and seismic performance. From the quasi-static test, it was found that the columns with all longitudinal reinforcement lap-spliced showed significantly reduced ductility. However, seismic performance of the columns with half of longitudinal reinforcement lap-spliced showed limited ductility but much more ductile behaviour than the columns with all longitudinal reinforcement lap-spliced. It was also found that the seismic performance, failure mode and strength degradation of columns with mechanical connected longitudinal reinforcement were similar to those of columns with continuous longitudinal reinforcement.

Strain Analysis of Longitudinal Reinforcing Steels of RC Bridge Piers Under Shaking Test (진동대 실험에 의한 RC교각의 주철근 변형률 분석)

  • Hong, Hyun-Ki;Yang, Dong-Wook;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.93-96
    • /
    • 2008
  • The near fault ground motion(NFGM) is characterized by a single long period velocity pulse of large magnitude. NFGM's have been observed in recent strong earthquakes, Turkey Izmit (1999), Japan Kobe(1995), Northridge(1994), etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the far fault ground motion(FFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this study is to investigate and analyze the effect of near-fault ground motions on RC bridge piers without lap-spliced longitudinal reinforcing steels. The seismic performance of two RC bridge piers under near-fault ground motions was investigated on the shake table. In addition, Two of four identical RC bridge piers were tested under a quasi-static load, and the others were under a pseudo-dynamic load. The respectively two RC bridge pier is comparatively subjected to Pseudo-dynamic loadings and Quasi-Static loadings. This paper indicated that more gives bigger ultimate strain of longitudinal steels to be fractured at bigger PGA motion.

  • PDF