• Title/Summary/Keyword: 준모수적 추정방법

Search Result 27, Processing Time 0.021 seconds

A Derivation of Rainfall Intensity-Duration-Frequency Relationship for the Design of Urban Drainage System in Korea (우리나라 도시배수시스템 설계를 위한 확률강우강도식의 유도)

  • Lee, Jae-Jun;Lee, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.403-415
    • /
    • 1999
  • This study is to derive the rainfall intensity formula based on the representative probability distribution in Korea. The 11 probability distributions which has been widely used in hydrologic frequency analysis are applied to the annual maximum rainfall. The parameters of each probability distribution are estimated by method of moments, maximum likelihood method and method of probability weighted moments. Four tests such as $x^2$-test, Kolmogorv-Smirnov test, difference test and modified difference test are used to determine the goodness of fit of the distributions. The homogeneous tests (Mann-Whitney U test, Kruskal-Wallis one-way analysis of variance of nonparametric test) are applied to find the stations with rainfall homogeneity. The results of homogeneous tests show that there is no representative appropriate distribution for the whole duration in Korea. The whole region could be divided into five zones for 12-durations. The representative probability distribution of each divided zone for 12-durations was determined. The GEV distribution for I,II,V zones and the 3-parameter Weibull distribution for III,IV zones were determined as the representative probability distribution. The rainfall were obtained from representative probability distribution for the selected return periods. Rainfall intensity formula was determined by linearization technique for the rainfall.

  • PDF

A Bayesian Approach to Geophysical Inverse Problems (베이지안 방식에 의한 지구물리 역산 문제의 접근)

  • Oh Seokhoon;Chung Seung-Hwan;Kwon Byung-Doo;Lee Heuisoon;Jung Ho Jun;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.262-271
    • /
    • 2002
  • This study presents a practical procedure for the Bayesian inversion of geophysical data. We have applied geostatistical techniques for the acquisition of prior model information, then the Markov Chain Monte Carlo (MCMC) method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter.

Additive hazards models for interval-censored semi-competing risks data with missing intermediate events (결측되었거나 구간중도절단된 중간사건을 가진 준경쟁적위험 자료에 대한 가산위험모형)

  • Kim, Jayoun;Kim, Jinheum
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.539-553
    • /
    • 2017
  • We propose a multi-state model to analyze semi-competing risks data with interval-censored or missing intermediate events. This model is an extension of the three states of the illness-death model: healthy, disease, and dead. The 'diseased' state can be considered as the intermediate event. Two more states are added into the illness-death model to incorporate the missing events, which are caused by a loss of follow-up before the end of a study. One of them is a state of the lost-to-follow-up (LTF), and the other is an unobservable state that represents an intermediate event experienced after the occurrence of LTF. Given covariates, we employ the Lin and Ying additive hazards model with log-normal frailty and construct a conditional likelihood to estimate transition intensities between states in the multi-state model. A marginalization of the full likelihood is completed using adaptive importance sampling, and the optimal solution of the regression parameters is achieved through an iterative quasi-Newton algorithm. Simulation studies are performed to investigate the finite-sample performance of the proposed estimation method in terms of empirical coverage probability of true regression parameters. Our proposed method is also illustrated with a dataset adapted from Helmer et al. (2001).

Rainfall Frequency Analysis Based on the Copula Method (Copula 방법을 통한 강우 빈도 해석)

  • Joo, Kyung-Won;Shin, Ju-Young;Kim, Soo-Young;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.376-380
    • /
    • 2011
  • 강우사상은 강우량, 지속기간, 강우강도 등의 특성으로 표현될 수 있으며 이런 인자들을 같이 고려할수록 그 현상을 보다 종합적으로 표현할 수 있다. 하지만 현재 일반적으로 이루어지는 일변량 빈도해석절차에서는 지속기간을 고정시켜놓고 각 지속시간에 따른 결과만을 도출해 낼 수 있기 때문에 지속기간에 대해 제약적이고 입력자료에 존재하지 않는 지속기간에 대한 결과를 얻기가 어렵다. Copula모델은 두 일변량 분포형을 다변량 분포형으로 연결하여 주는 모델이다. 따라서 강우량과 지속기간을 변수로 사용하면 Copula모델을 통한 이변량 강우빈도해석은 보편적으로 이루어지고 있는 일변량 지점빈도해석보다 지속기간에 대해 유연한 결과를 나타낼 수 있다. 즉, 강우와 지속기간이 동시에 변수로 사용되기 때문에 임의의 지속기간이나 강우에 대해서 확률강우량 및 확률지속기간을 얻을 수 있다. 본 연구에서는 서울지점을 대상으로 1961∼2009년 동안 발생한 강우사상 중 각 년도에서 최대강우량이 발생한 사상을 추출하여 입력자료로 사용하였다. Copula 모형은 Gumbel-Hougaard, Frank, Joe, Clayton, Galambos등 총 5개의 모델을 적용하였고 각 Copula의 매개변수는 준모수방법인 maximum pseudolikelihood estimator를 이용하여 추정하였다.

  • PDF

Application of Jackknife Method for Determination of Representative Probability Distribution of Annual Maximum Rainfall (연최대강우량의 대표확률분포형 결정을 위한 Jackknife기법의 적용)

  • Lee, Jae-Joon;Lee, Sang-Won;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.857-866
    • /
    • 2009
  • In this study, basic data is consisted annual maximum rainfall at 56 stations that has the rainfall records more than 30years in Korea. The 14 probability distributions which has been widely used in hydrologic frequency analysis are applied to the basic data. The method of moments, method of maximum likelihood and probability weighted moments method are used to estimate the parameters. And 4-tests (chi-square test, Kolmogorov-Smirnov test, Cramer von Mises test, probability plot correlation coefficient (PPCC) test) are used to determine the goodness of fit of probability distributions. This study emphasizes the necessity for considering the variability of the estimate of T-year event in hydrologic frequency analysis and proposes a framework for evaluating probability distribution models. The variability (or estimation error) of T-year event is used as a criterion for model evaluation as well as three goodness of fit criteria (SLSC, MLL, and AIC) in the framework. The Jackknife method plays a important role in estimating the variability. For the annual maxima of rainfall at 56 stations, the Gumble distribution is regarded as the best one among probability distribution models with two or three parameters.

Dual Trajectory Modeling Approach to Analyzing Latent Classes in Youth Employees' Job Satisfaction and Turnover Intention Trajectories (청년 취업자의 직무만족도와 이직의사 변화의 잠재계층에 대한 이중 변화형태 모형의 적용)

  • No, Un-Kyung;Hong, Se-Hee;Lee, Hyun-Jung
    • Survey Research
    • /
    • v.12 no.2
    • /
    • pp.113-144
    • /
    • 2011
  • The purposes of the present study were (1) to identify the latent classes depending on youth employees' trajectories in job satisfaction and turnover intention and (2) to test the effects of person-job fit(major fit, education level fit, skill level fit) on job satisfaction and turnover intention using Youth Panel 2001. In order to estimate latent classes of job satisfaction and turnover intention changes simultaneously and study probabilities linking latent class membership in trajectory across the two variables, we applied dual trajectory model, an extension of semi-parametric group-based approach, Results showed that four latent classes were identified for job satisfaction, which were defined, based on the trajectory patterns, as increasing group, decreasing group, medium-level group, and high-level group. And, three latent classes estimated for turnover intention were defined as low-level group, maintaining group, and rapidly decreasing group. To test the effects of person-job fit variables, we added the variables as time-dependant variables to the unconditional latent class model. The effect of education level fit and skill level fit were found significant in the groups which are low in job satisfaction and have high in turnover intention. Findings from this study suggest the need to consider trajectory heterogeneity in the study of youth employees' job satisfaction and turnover intention to capture the dynamic dimension of overlap between the two constructs.

  • PDF

Variable Selection in Frailty Models using FrailtyHL R Package: Breast Cancer Survival Data (frailtyHL 통계패키지를 이용한 프레일티 모형의 변수선택: 유방암 생존자료)

  • Kim, Bohyeon;Ha, Il Do;Noh, Maengseok;Na, Myung Hwan;Song, Ho-Chun;Kim, Jahae
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.965-976
    • /
    • 2015
  • Determining relevant variables for a regression model is important in regression analysis. Recently, a variable selection methods using a penalized likelihood with various penalty functions (e.g. LASSO and SCAD) have been widely studied in simple statistical models such as linear models and generalized linear models. The advantage of these methods is that they select important variables and estimate regression coefficients, simultaneously; therefore, they delete insignificant variables by estimating their coefficients as zero. We study how to select proper variables based on penalized hierarchical likelihood (HL) in semi-parametric frailty models that allow three penalty functions, LASSO, SCAD and HL. For the variable selection we develop a new function in the "frailtyHL" R package. Our methods are illustrated with breast cancer survival data from the Medical Center at Chonnam National University in Korea. We compare the results from three variable-selection methods and discuss advantages and disadvantages.