• Title/Summary/Keyword: 주향/경사

Search Result 98, Processing Time 0.025 seconds

Application of geophysical exploration for gold in the YongJang mine, Masan (마산 용장광산에서 금광에 대한 물리탐사의 적용)

  • Park, Jong-Oh;Song, Moo-Young;Park, Chung-Hwa;You, Young-June
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.213-219
    • /
    • 2006
  • The Yongjang mine is located in Masan City, Gyeongsangnamdo, which consists of a black shale possessing quartzite veins with othercompositions such as gold, silver, and sublimated sulfur. The average width of the veins is $9{\sim}17cm$ and the average degrees of the gold and silver are 3.6 g/t and 113.6 g/t respectively. A regional and a detailed scale electrical resistivity surveys are conducted to determine the existence of the mineralization zones and the linear structures in the study area. In addition, surveys of a several different array methods are conducted such as dipole-dipole array in the surface and borehole-to-surface array, surface-to-borehole array, and dipole-dipole array in the borehole. The method of element division can be applied to the region in which the borehole is curved, inclined or the distance between the electrodes is shorter than that of nodal points, because the coordinate of each electrode cannot be assigned directly to the nodal point if several electrodes are in an element. Yongjang vein is extended longer under the subsurface than on the surface in the images reconstructed from the 3D inversion. Therefore, it is recognized that the 3-D interpretation of the electrical resistivity survey is a very useful method to figure out the existence of strike and extension direction because the mineralization zones and the linear structures are shown in each depth.

  • PDF

Magnetic Investigation of the Yangsan Fault (양산 단층에 대한 자력탐사 연구)

  • Kwon, Byung-Doo;Lee, Ki-Won
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.421-434
    • /
    • 1991
  • Ground magnetic surveys were conducted at four areas where the Yangsan fault, the most prominent lineament in the Kyeongsang basin, appears to be passed through. For data processing, IGRF correction, upward continuation and reduction-to-the-pole were performed. The automatic inversion by using a matrix computation method, which takes the depth to bottom layer of the horizontal two layer structure as the model parameter, has been attempted to delineate the subsurface structure. Upward continuation of the surface magnetic map to the same level of the aeromagnetic survey (KIER, 1989) resulted in very similiar patterns to those of aeromagnetic data. Subsurface modeling of eight profile data show that the strike and dip of the Yangsan fault in study areas are $N6^{\circ}-15^{\circ}E$, and near vertical to somewhat eastward, repectively, despite of the local lithological contrast of each study area. It seems that the magnetic effect of faulting in the study area 1, which locates in the most northern part of the survey areas, is disturbed by that of igneous intrusion. At study area 2, the possibility of volcanic or igneous intrusion, which is 200-300 meters wide along the fault plane was presented. At study area 3, unlike other study areas, distinct fracture zone of 500-700 meters in width was revealed along the surface fault line. The andesitic rocks of the study area 4 have very high susceptibilities and the fault line on surface of this area was shifted about 500 meter eastward, as compared with the inferred fault line by the previous study.

  • PDF

Risk Assessment of the Road Cut Slopes in Gyeoungnam based on Multiple Regression Analysis (다중회귀분석을 통한 경남 지방도로 절취사면의 안정성평가)

  • Kang, Tae-Seung;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.393-404
    • /
    • 2007
  • The purpose of this study is to capture the essentials in survey and evaluation scheme which are able to assess the hazard of a rock slope systematically. Statistical analysis are performed on slope instability parameters related to failure of the rock slope. As the slope instability parameters, twelve survey items are considered such as tension crack, surface deformation, deformation of retaining structures, volume of existing failures, angles between strike of discontinuity and strike of cut slope face, angles between dip of discontinuity and dip of cut slope face, discontinuity condition, cut slope angle, rainfall or ground water level, excavation condition, drainage condition, reinforcement. A total of 233 road cut slopes located in Gyeongnam were considered. The stability of the road cut slopes were evaluated by estimating the slope instability index(SII) and corresponding stability rank. 126 rock slopes were selected to analyze statistical relation between SII and slope instability parameters. The multiple regression analysis was applied to derive statistical models which are able to predict the SII and corresponding slope stability rank. Also, its applicability was explored to predict the slope failures using the variables of slope instability parameters. The results obtained in this study clearly show that the methodology given in this paper have strong capabilities to evaluate the failures of the road cut slope effectively.

Sedimentary History and Tectonics in the Southeastern Continental Shelf of Korea based on High Resolution Shallow Seismic Data. (고해상탄성파탐사자료에 의한 한국남동대륙붕의 퇴적사 및 조구조운동)

  • Min Geon Hong;Park Yong Ahn
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.1-8
    • /
    • 1997
  • Seismic stratigraphic analysis of the high resolution profiles obtained from the southeastern shelf of Korea divided the deposits into 4 sequences; 1) sequence D, 2) sequence C, 3) sequence B and 4) sequence A (Holocene sediments). Sequence D was deposited in shallow-water environment at west of the Yangsan Fault as the basin subsided. On the other hand, the eastern part was formed at the slope front. Landward part of the slope-front fill sediments were eroded and redeposited nearby slope due to the syndepositional tilting of the basin. This tilting probably resulted from the continuous closing of the Ulleung Basin. Sequence C is made of stacked successions of the lowstand fluvial sediments, transgressive sediments and marine highstand sediments derived from the paleo-river in the western part of the Yangsan Fault. Sequence C in the eastern part of the Yanshan Fault was formed at the shelf break. Progradation of the lowstand sediments resulted in broadening of the shelf. Sequence C in the eastern part was also tilted but the tilting was weaker than in Sequence D. During the formation of sequence B the tilting stopped and the point source instead of the line source started in both sides of the Yangsan Fault. Sequence B was composed of the highstand systems tract partially preserved around the Yokji island, lowstand systems tract mainly preserved in the Korea Trough and transgressive systems tract. After the stop of the tilting, the force of compression due to the closing of the Ulleung Basin may be released by the strike-slip faults instead of tilting.

  • PDF

Structural Analysis of the North Sobaegsan Massif in the Sangun-myeon area, Bonghwa-gun, Korea (봉화군 상운면지역에서 북부 소백산육괴의 지질구조 해석)

  • 강지훈;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.254-270
    • /
    • 2000
  • To clarify the geological structure of North Sobaegsan Massif in the Sangunmyeon area, Bonghwagun, Korea, where the Yecheon Shear Zone passes and the NE-SW and E-W trending structural lineaments are developed, the rock-structures of its main constituent rocks(Precambrian Won-nam Formation and Mesozoic Hornblende Granite) were examined. In this area, the geological structure was formed at least by four phases of deformation after the formation of gneissosity or schistosity of the Wonnam Formation: one deformation before D2 ductile shearing related to the for-mation of the Yecheon Shear Zone and two deformations after that. The NE-SW and E-W trending structural lineaments were formed by a giant open or gentle type of F4 fold, and their trends before D4 deformation are interpreted to be parallel to the orientation(ENE-WSW trend) of folded surface in the F4 hinge zone. The structural features of Dl-D3 deformations and their relative occurrence times are as follows. Dl deformation is formative period of the boudin structures and ENE-WSW trending isoclinal folds with sub-horizontal hinge lines and steeply inclined axial surfaces. D2 deformation is that of the mylonite foliation, stretching lineation and Z-shaped asymmetric folds related to top-to-the ENE dextral strike-slip shearing on the distinct foliations of Wonnam Formation(after intrusion of Mesozoic Hornblende Granite). D3 deformation is that of the ENE trending S-shaped asymmetric folds with sub-horizontal hinge lines and axial surfaces related to normal-slip shearing on the distinct foliations. It is expected that the result will be contributed to as valuable data for interpreting the tectonic evolution of the North Sobaegsan Massif and the Northeast Ogcheon Belt whose tectonic lineaments are changed from NE-SW to E-W trends at the Sindong-Bonghwa line.

  • PDF

Identification of the Transmissive Fractures in the Vicinity of waterway Tunnel (도수로터널 주변 지역의 지하수 유동성 단열 규명)

  • 이병대;이인호;추창오;함세영;성익환;황세호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.33-44
    • /
    • 2002
  • A field technique for assessing the transmissive fractures in an aquifer was applied to a fractured rock formation in Youngchun area Korea. Geological mapping and detailed acoustic borehole teleview(BHTV) logging were performed to obtain information about the fractures. The study area consists predominantly of two types of fractures. The fracture sets of low angle partings such as bedding and sheeting plains have strike N70-80$^{\circ}$W, 25$^{\circ}$-30$^{\circ}$SW and N3S$^{\circ}$W, 12$^{\circ}$NE, respectively. In areas of high fractures, on the other hand, the major fracture sets show strike N80$^{\circ}$W and dip 70$^{\circ}$-85$^{\circ}$SW, N10$^{\circ}$E.85$^{\circ}$SE in sedimentry rocks, N40-50$^{\circ}$E.85$^{\circ}$SE/85$^{\circ}$NE, N70$^{\circ}$E.80$^{\circ}$SE, and N7$^{\circ}$-75$^{\circ}$W.80$^{\circ}$SW in granites and volcanic rocks. Injection tests have been performed to identify discrete production zones and quantify the vertical distribution of hydraulic conductivity. The calculated hydraulic conductivities range from 3.363E-10 to 2.731E-6, showing that the difference between maximum and minimum value is four order of magnitude. Dominant section in hydraulic conductivity is extensively fractured. Geophysical logging was carried out to clarify characterization of the distribution of fracture zones. Transmissive fractures were evaluated through the comparison of the results obtained by each method. The temperature logs appeared to be a good indicator that can distinguish a high transmissive fractures from a common fractures in hydraulic conductivity. In numerous cases, evidence of fluid movement was amplified in the temperature gradient log. The fracture sets of N70-80$^{\circ}$W.60-85$^{\circ}$NE/SW N75-80$^{\circ}$W.25-30$^{\circ}$SW, N50-64$^{\circ}$W.60-85$^{\circ}$NE, N35-45$^{\circ}$E.65-75$^{\circ}$SE, and N65-72$^{\circ}$E.80$^{\circ}$SE/60$^{\circ}$NW were idenfied as a distinct transmissive fractures through the results of each tests.

Characteristics of Fracture System in Precambrian Metamorphic Rocks and Mesozoic Granites from Seokmo-do, Ganghwa-gun (강화군 석모도 일대의 선캠브리아기 변성암류 및 중생대 화강암류에서 발달하는 단열계의 분포특성)

  • Park, Deok-Won;Lee, Chang-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.123-139
    • /
    • 2010
  • The properties of fracture system in Precambrian Jangbong schist and Mesozoic granites from Seokmo-do, Ganghwa-gun were investigated and analyzed. Most of the fractures measured at outcrops are nearly vertical or steeply dipping. Orientations of fracture sets in terms of frequency order are as follows: Set $1:N2^{\circ}E/77^{\circ}SE$, Set $2:N17^{\circ}E/84^{\circ}NW$, Set $3:N26^{\circ}E/64^{\circ}SE$, Set $4:N86^{\circ}W/82^{\circ}SW$, Set $5:N80^{\circ}W/77^{\circ}NE$, Set $6:N60^{\circ}W/85^{\circ}SW$, Set $7:N73^{\circ}E/87^{\circ}NW$, Set $8:N82^{\circ}W/53^{\circ}NE$, Set $9:N23^{\circ}W/86^{\circ}SW$, Set 10: $N39^{\circ}W/61^{\circ}NE$. Especially, the rose diagram of fracture strikes(N:240) indicates that there are two dorminant directions of N-S~NNE and WNW. These distribution pattern of fractures from Seokmo-do correponds with those of major lineaments from South Korea suggested in previous study. Meanwhile, the scaling properties on the length distribution of fracture populations have been investigated. First, fracture sets from Precambrian Jangbong schist and Mesozoic granites(north and south rock body) has been classified into five groups(group I~V) based on strike and frequency. Then, the distribution chart generalized the individual length-cumulative frequency diagram for above five groups were made. From the related chart, five subpopulations(group I~V) that closely follow a power-law length distribution show a wide range in exponents(-0.79~-1.53). These relative differences in exponent among five groups emphasizes the importance of orientation effect. From the related chart, the diagram of group III occupies an upper region among five groups. Finally, the distribution chart showing the chracteristics of the length frequency distribution for each rock body were made. From the related chart, the diagram of each rock body shows an order of porphyritic biotite granite < hornblende granodiorite < medium-grained biotite granite(south rock body) < medium-grained biotite granite(north rock body) < Precambrian Jangbong schist. From the related chart, the diagram of more older rock body in the formation age tends to occupy an upper region. Especially, the diagram of Precambrian Jangbong schist occupies an upper region compared with the diagrams of Mesozoic granites. These distributional chracteristics suggests that coexistence of new fracture initiation and growing of existing fractures corresponding with stress field acted since the formation of rock body.

Mineralogy and Genesis of Manganese Ores from the Jangseong Manganese Deposits, Korea (장성(長省) 망간 광석(鑛石)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Kim, Soo Jin;Yoon, Hyeon
    • Economic and Environmental Geology
    • /
    • v.19 no.4
    • /
    • pp.265-276
    • /
    • 1986
  • The Jangseong manganese deposits are supergene oxidation products of hydrothermal rhodochrosite. The manganese ore veins are developed in the Dongjeom Quartzite, and Dumudong Formation. The deposits consist of primary manganese carbonate ores in the deeper part and manganese oxide ores near the surface. The manganese carbonate ores are composed of rhodochrosite and small amounts of sulfides. The manganese oxide ores are composed of birnessite, nsutite, todorokite, chalcophanite, and pyrolusite. Microscopic, X-ray diffraction, infrared, thermal and EPMA analyses have been made for manganese oxide minerals and other associated minerals. The manganese minerals were formed in the following sequence. Rhodochrosite$\rightarrow$birnessite$\rightarrow$todorokite$\rightarrow$nsutite-pyrolusite. Thermochemical properties of chalcophanite were studied by methods of X-ray powder diffraction, infrared absorption spectroscopic analysis and dehydration experiments. Chalcophanite changes to $4.8{\AA}$ phase at $90{\sim}110^{\circ}C$. Chemical analyses show that the manganese oxide minerals generally have high concentration in Zn.

  • PDF

Structural Stability, Weathering and Conservation Method of Granite Standing Sculptured Buddha at Hwangsang-dong, Kumi (구미 황상동 마애여래입상의 구조적 안정성, 풍화 및 보존방안)

  • Lee, Chan Hee;Choi, Suck Won;Suh, Mancheol;Chae, Sang Jeong
    • Journal of Conservation Science
    • /
    • v.9 no.1
    • /
    • pp.21-32
    • /
    • 2000
  • Rock composition of the Hwangsang-dong Granite Standing Sculptured Buddha (Treasure No. 1122) in the Kumi City is biotite-hornblende granodiorite which consists of about 30 pieces of individual rock blocks of same compositions. However, the cap rocks is pebble-bearing coarse sandstone. Rock blocks of the Standing Buddha and surrounding out crops occur well developed several joint systems of $N25^{\circ}$ to $45^{\circ}W$ strike and nearly vertical (70 to $85^{\circ}SE$) dipping. Rock blocks of the Standing Buddha showed vertical, horizontal and oblique joints, and those blocks are well supported by individual blocks. However, the junction part of the blocks are under dangerous situation due 10 seriously mechanical and chemical weathering. Host rock of the Standing Buddha belongs to the HW grade, therefore mostly rock-forming minerals of the granodiorite Standing Buddha altered with clay and iron hydroxide minerals by mineralogical and chemical weathering. Near surface of the Standing Buddha show spore and mycelium of green algaes, and a joint plane alive with weeds. We suggest that if structural stability for the Standing Buddha remove essentially a unstable rock blocks from the main body, and the main body necessitate supporting by rock bolting method because of repeated unstability and minimizing stress to the rock blocks. For the opened joint planes, fractured surface and alive weeds will attempt to fill in a petro-epoxy, petro-filler and biochemical treatments for the algaes, and ground water curtain and wall seems to be necessary for water flow and diminishing humidity of the Standing Buddha.

  • PDF

On the Latest Tectonic Environment Around Northern Part of the Yangsan Fault, Korea (양산단층 북부 일대의 최후기 지구조환경에 대해)

  • Ryoo, Chung-Ryul;Kang, Ji-Hoon;Kang, Hee-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.173-184
    • /
    • 2018
  • Geologic structures related to the latest event in the evolution around Gyeongsang Basin are mainly associated with the Yangsan Fault. In particular, the structures in the northern part of the Yangsan Fault are mainly observed in the region between Bogyeongsa Temple and Danguri. Such structures are also clustered in the vicinity of the Yangsan Fault, exhibiting similar geometric and kinematic patterns. In general, N-S and NE-SW trending fractures and tectonogeomorphic lineament are mainly eastward dipping reverse faults, such that the blocks in the east of the structures moved west or northwest. The reverse faults are segmented by NW trending fractures that accommodate strike-slip movements. The reverse faults and geomorphotectonic lineaments related to the latest event of deformation in the northern part of the Yangsan Fault show a westward convex patterns. We infer that these structures were initially normal faults that formed during a NW-SE extensional environment and were later reactivated during an E-W compressional one. Such a deformation pattern is also well developed around Pohang-Heunghae area based on the tectonogeomorphic analysis, which appears to be closely related to the Pohang Earthquake (15 Nov. 2017), and its development of the surface rupture and highly damaged zones.