• Title/Summary/Keyword: 주행 사이클 시뮬레이션

Search Result 5, Processing Time 0.017 seconds

A Simulation Study of the Performance of a Propulsion Equipment for Bimodal Tram (바이모달 트램의 추진장치 성능 모의)

  • Bae, Chang-Han;Mok, Jai-Kyun;Chang, Se-Ky;Lee, Kang-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.122-128
    • /
    • 2009
  • A bimodal low-floor tram is designed to provide the flexibility of bus and the punctuality of trains together to the passengers. The propulsion equipment of the bimodal tram is a series hybrid type using a set of CNG engine generator and Li-polymer battery. The present paper describes the specifications of the propulsion system in the bimodal tram which was drawn by a desirable driving cycle. In addition, it shows how the propulsion system of the bimodal tram can be controlled. With using a computer simulation tool of hybrid vehicles, ADVISOR, the performance of the bimodal tram was verified.

The Analysis of Energy Consumption for an Electric Vehicle under Various Driving Circumstance (준중형급 전기자동차의 주행특성에 따른 에너지 소모량 분석)

  • Lee, Dae-Heung;Seo, Ho-Won;Jeong, Jong-Ryeol;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.38-46
    • /
    • 2012
  • This paper discusses the energy consumption for a mid-size electric vehicle(EV) under various conditions. In order to analyze which driving style is more efficient in terms of the system of the EV, we develop the electric vehicle model and apply several types of speed profiles such as different steady speeds, acceleration/deceleration, and a real world driving cycle including the elevation profile obtained from a GPS device. The results show that the energy consumption of the EV is affected by the operating efficiency of components when driving at low speed, while it depends on required power at wheels when driving at high speed. Also this paper investigates the effect of the elevation of a road and the rate of electrical braking on the energy consumption as well as the fuel economy of a conventional vehicle model under the same conditions.

Fuzzy Logic Slip Control of Torque Converter Clutch System for Passenger Car Considering Road Grade Resistance (노면 경사부하를 고려한 승용차용 토크컨버터 클러치 시스템의 퍼지 슬립 제어)

  • Han, Jin-O;Sin, Byeong-Gwan;Jo, Han-Sang;Lee, Gyo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.718-727
    • /
    • 2000
  • Nowadays, most passenger cars equipped with automatic transmissions use torque converter clutches to reduce fuel consumption, and recently the slip control scheme of torque converter clutches is widely studied for the expansion of the operating region of torque converter clutches and thus for the further improvement of the fuel economy of vehicles. In this study, the analysis of the torque converter clutch system including the line pressure control unit of the automatic transmission and the actuating hydraulic control unit of the torque converter clutch is performed, and a feedforward controller and a fuzzy logic controller for its slip control are proposed. Also, for the slip controller to use the grade resistance information during control, an observer-based grade resistance estimator is designed. The performance of the designed grade resistance estimator and the slip controller is verified by dynamic simulations, and the effect of the torque converter clutch slip control on the fuel economy is examined using a driving cycle simulation.

Computation of the Shortest Distance of Container Yard Tractor for Multi-Cycle System (다중 사이클 시스템을 위한 실시간 위치 기반 컨테이너 야드 트랙터 최단거리 계산)

  • Kim, Han-Soo;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.17-29
    • /
    • 2010
  • A container terminal productivity is maximized by a minimized time for processing containers. So, we have been elevated the container terminal productivity through an improvement of computing system, but there are a limitation because of problems for transportation management and method. A Y/T(Yard Tractor), which is a representative transportation, is able to do only one process, loading or unloading, at one time. So if the Y/T can do loading and unloading step by step at a same time, the processing time would be shortened. In this paper, we proposed an effective operating process of Y/T(Yard Tractor) Multi-Cycle System by applying RTLS(Real Time Location System) to Y/T(Yard Tractor) in order to improve the process of loading and unloading at the container terminal. For this, we described Multi-Cycle System. This system consists of a real time location of Y/T based on RTLS, an indicating of Y/T location in real time with GIS technology, and an algorithm(Dijkstra's algorithm) of the shortest distance. And we used the system in container terminal process and could improve the container terminal productivity. As the result of simulation for the proposed system in this paper, we could verify that 9% of driving distance was reduced compared with the existing rate and 19% of driving distance was reduced compared with the maximum rate. Consequently, we could find out the container performance is maximized.

Series-Type Hybrid Electric Bus Fuel Economy Increase with Optimal Component Sizing and Real-Time Control Strategy (최적용량매칭 및 실시간 제어전략에 의한 직렬형 하이브리드 버스의 연비향상)

  • Kim, Minjae;Jung, Daebong;Kang, Hyungmook;Min, Kyoungdoug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.307-312
    • /
    • 2013
  • The interest in reducing the emissions and increasing the fuel economy of ICE vehicles has prompted research on hybrid vehicles, which come in the series, parallel, and power-split types. This study focuses on the series-type hybrid electric vehicle, which has a simple structure. Because each component of a series hybrid vehicle is larger than the corresponding component of the parallel type, the sizing of the vehicle is very important. This is because the performance may be greater or less than what is required. Thus, in this research, the optimal fuel economy was determined and simulated in a real-world system. The optimal sizing was achieved based on the motor, engine/generator, and battery for 13 cycles, where DP was used. The model was developed using ASCET or a Simulink-Amisim Co-simulation platform on the rapid controller prototype, ES-1000.