• Title/Summary/Keyword: 주행안전성평가

Search Result 275, Processing Time 0.029 seconds

Effectiveness Analysis of Variable Speed Limit Systems(VSL) in Work Zones based on Meta-analysis (메타분석을 이용한 공사구간 가변속도제한시스템(VSL) 효과분석)

  • Jo, Young;Youn, Seok-min;Oh, Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.91-103
    • /
    • 2016
  • The work zone traffic management is of keen interest because the unstable traffic stream in work zones leads to not only less productive traffic operational efficiency but also negative impacts on traffic safety. A promising method to address such issues is variable speed limit systems(VSLS). VSLS is expected to increase in throughput and to enhance safety by diminishing the crash potential. In addition, the usefulness of VSLS has been demonstrated by significant amount of existing literature. The objective of this study is to identify the effectiveness of VSLS based on a meta analysis technique. Throughput and travel speed were used as measures of effectiveness for VSLS in terms of the operational efficiency and safety respectively. Results showed that approximately 16.4% increase in throughput and 16.5% decrease in travel speed were obtainable by VSLS. The outcomes of this study would be useful in developing technologies and polices for better operation of VSLS.

Evaluation of running safety and measuring wheel/rail force for korean high speed railway vehicle (한국형 고속철도차량의 차륜/레일 작용력 측정 및 주행안전성 평가)

  • 함영삼;오택열;백영남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.507-512
    • /
    • 2003
  • The railroad is a means of large transportation which has many latents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more important in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of high speed rail, such as to treat a measuring wheelset, its finite element analysis, adhesion of strain gauges and static toad test, running test result of main line.

  • PDF

A Study of Dynamic Characteristic Analysis Algorithm for Running Safety Assessment (주행안전성 평가를 위한 동특성 해석알고리즘 연구)

  • Chung J.D.;Han S.Y.;Chun H.J.;Pyun J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.411-412
    • /
    • 2006
  • It is very difficult to analyze the dynamic characteristic because railway vehicle is a very complex system which are connected various mass element with railway vehicle system. To realize and analyze actual phenomenon has restriction that usual commercial software calculates creep force under creep theory about wheel-rail contact mechanism as basic analyzing, and approach about contact point are based on two dimensional non-linear contact theory and simplified Hertzian contact which considers just displacement change on the YZ plain. Therefore, to solve these problems there should be a new approach difference with existing one. In this research, a new algorithm for finding wheel-rail contact position, calculation method of contact force and applied force will be presented.

  • PDF

A Running Safety Assessment for Curved Section for a Railway Vehicle (철도차량의 곡선 구간별 주행안전성 평가)

  • Lee, Seung-Il;Lee, Hi-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1301-1309
    • /
    • 2008
  • The curved portion fur each section running safety evaluation interpretation according to the track condition for improving the curved portion passage rate of a vehicle by using the multibody analysis model of the Saemaeul train was carried out. As a result, The excess of cant reaches the bad effect to the running safety in case the radius of curvature is small. In case the radius of curvature was large, we could confirm that the deficiency of cant reached the bad effect to the running safety. In the curved portion, the circular curve section most badly showed the running safety. The deficiency of curve length reaches the bad to the running safety. In the curved portion, the circular curve section most badly showed the running safety. Therefore the track condition(cant, transition curve length, etc) can reach the bad effect to the running safety of a vehicle, the exact design is required.

The research of implementing safety driving system based on camera vision system (Camera Vision 기반 주행안전 시스템 구현에 관한 연구)

  • Park, Hwa-Beom;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1088-1095
    • /
    • 2019
  • The information and communication technology that is being developed recently has been greatly influencing the automobile market. In recent years, devices equipped with IT technology have been installed for the safety and convenience of the driver. However, it has the advantage of increased convenience as well as the disadvantage of increasing traffic accidents due to driver's distraction. In order to prevent such accidents, it is necessary to develop safety systems of various types and ways. In this paper implements a platform that can recognize LDWS and FCWS and PDWS by using a single camera without using radar sensor and camera fusion and stereo camera method using two or more sensors, and proposes to study multi-function driving safety platform using a single camera by analyzing recognition rate evaluation and validity on a vehicle.

The Simulator Study on Driving Safety while Driving through the Longitudinal Tunnel (차량시뮬레이터를 이용한 장대터널 주행안전성 연구)

  • Ryu, Jun-Beom;Sihn, Yong-Kyun;Park, Sung-Jin;Han, Ju-Hyun
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.149-156
    • /
    • 2011
  • Considerable evaluation is needed to design a new longitudinal tunnel in advance because it damaged drivers' driving safety and heightened the possibility of traffic accidents with its physical characteristics. Specifically, considering traffic psychological and ergonomic factors was very important to prevent the difficulty of maintaining safe speed, the increase of the drowsy driving, the fatality of traffic accidents, and subjective feelings such as anxiety while driving a car through the tunnel, from design to construction. This study dealt with driving safety evaluation of an original road alignment design for the longitudinal tunnel (length: above 10km) with a driving simulator, and helped us to improve an original road alignment design and make an alternative road alignment design with presenting risky districts. The results of experiment showed that inflection points were revealed more risky districts, because they impaired driving safety and elevated driver workload while driving a car through around the inflection points of two-way route. Finally, the limitations and implications of this study were discussed.

Tilting Train-induced Roadbed Response on the Conventional Line (틸팅열차 주행시 기존선 흙 노반의 응답특성)

  • Koh, Tae-Hoon;Kwak, Yeon-Suk;Hwang, Seon-Keun;SaGong, Myung
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.433-441
    • /
    • 2011
  • It is a fact that the straightening of track alignment is one of the undoubted ways to improve the train speed on conventional lines, while that requires huge investment resources. Therefore, the operation of a tilting train as well as the minimum improvement of track is suggested as an effective and economical alternative way for the speed-up of conventional lines. Since a driving mechanism of tilting train is different from those of existing trains, in order to make sure its operation safety and stability on conventional line, the performance of track and roadbed must be preferentially evaluated on the conventional line. Furthermore, it is necessary to estimate the tilting-train-induced roadbed response in detail since the roadbed settlement can lead to the track deformation and even derailment. In this research, the patterns of wheel load and lateral force were monitored and analyzed through the field tests, and the derailment coefficient and degree of wheel off-loading were calculated in order to evaluate the tilting train running safety depending on the running speeds (120km~180km) on the conventional line. Moreover, roadbed pressure, settlement and acceleration were also observed as tilting-train-induced roadbed responses in order to estimate the roadbed stability depending on the running speeds. Consequently, the measured derailment coefficient and degree of wheel off-loading were satisfied with their own required limits, and all of the roadbed responses were less than those of existing high-speed train (KTX) over an entire running speed range considered in this study. As a result of this study, the tilting train which will be operated in combination with existing trains is expected to give no adverse impact on the conventional line even with its improved running speed.

Lane Change Behavior of Manual Vehicles in Automated Vehicle Platooning Environments (군집주행 환경에서 비자율차의 차로변경행태 분석)

  • LEE, Seol Young;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.332-347
    • /
    • 2017
  • Analysis of the interaction between the automated vehicles and manual vehicles is very important in analyzing the performance of automated cooperative driving environments. In particular, the automated vehicle platooning can affect the driving behavior of adjacent manual vehicles. The purpose of this study is to analyze the lane change behavior of the manual vehicles in automated vehicle platonning environment and to conduct the experiment and questionnaire surveys in three stages. In the first stage, a video questionnaire survey was conducted, and responsive behaviors of manual vehicles were investigated. In second stage, the driving simulator experiments were conducted to investigate the lane change behaviors of in automated vehicle platonning environments. To analyze the lane change behavior of the manual vehicles, lane change durations and acceleration noise, which are indicators of traffic flow stability, were used. The driving behavior of manual vehicles were compared across different market penetration rates (MPR) of automated vehicles and human factors. Lastly, NASA-TLX (NASA Task Load Index) was used to evaluate the workload of the manual vehicle drivers. As a result of the analysis, it was identified that manual vehicle drivers had psychological burdens while driving in automated vehicle platonning environments. Lane change durations were longer when the MPR of the automated vehicles increased, and acceleration noise were increased in the case of 30-40 years old or female drivers. The results from this study can be used as a fundamental for more realistic traffic simulations reflecting the interaction between the automated vehicles and manual vehicles. It is also expected to effectively support the establishment of valuable transportation management strategy in automated vehicle environments.