• Title/Summary/Keyword: 주행성분석

Search Result 850, Processing Time 0.026 seconds

Analysis on Safety and Ride Comfort of KTX According to Track Surface (고저틀림에 따른 KTX 주행거동 특성 분석)

  • Choi, Il-Yoon;Koo, Dong-Hoe;Hwang, Seok-Yeol;Lim, Yun-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.583-588
    • /
    • 2010
  • Track irregularities is one of key factors influencing running behavior of train. In order to ensure safety and ride comfort, it is highly important that relationship between track irregularity and running behavior of vehicle is identified and the criteria for track irregularities is adequately established. Numerical analysis was conducted to investigate influence of surface on running behavior of KTX and various wavelength and amplitude of surface were considered in numerical analysis. Derailment, lateral load, bogie acc., body acc. of numerical analysis results were investigated to evaluate the effect on track profile on safety and ride comfort of KTX.

A Study of the Trend Analysis of National Automated Vehicle Research Using NTIS Data (NTIS 데이터를 이용한 국내 자율주행 연구 동향 분석에 관한 연구)

  • In-Seok Jeong;Jiwon Kang;Jongdeok Lee;Sangmin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.147-163
    • /
    • 2023
  • Recently, there has been an increase in the research and development of automated vehicles worldwide. Research focused on automated vehicles in Korea is steadily progressing as a national R&D project. Since automated driving technology comprises diverse technology fields, it is necessary to identify the current position of the research. In this study, we propose a methodology for analyzing research trends using the NTIS data. In addition, we review the effectiveness of the currently developed research trend methodology by deriving primary keywords and major topics using the proposed method. We expect that the methodology developed in this study can be applied to identify and analyze future automated vehicle research trends.

A Study on the Risk Analysis and Fail-safe Verification of Autonomous Vehicles Using V2X Based on Intersection Scenarios (교차로 시나리오 기반 V2X를 활용한 자율주행차량의 위험성 분석 및 고장안전성 검증 연구)

  • Baek, Yunseok;Shin, Seong-Geun;Park, Jong-ki;Lee, Hyuck-Kee;Eom, Sung-wook;Cho, Seong-woo;Shin, Jae-kon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.299-312
    • /
    • 2021
  • Autonomous vehicles using V2X can drive safely information on areas outside the sensor coverage of autonomous vehicles conventional autonomous vehicles. As V2X technology has emerged as a key component of autonomous vehicles, research on V2X security is actively underway research on risk analysis due to failure of V2X communication is insufficient. In this paper, the service scenario and function of autonomous driving system V2X were derived by presenting the intersection scenario of the autonomous vehicle, the malfunction was defined by analyzing the hazard of V2X. he ISO26262 Part3 process was used to analyze the risk of malfunction of autonomous vehicle V2X. In addition, a fault injection scenario was presented to verify the fail-safe of the simulation-based intersection scenario.

Analysis of Impacts of Aggressive Driving Events on Traffic Stream Using Driving and Traffic Simulations (주행 및 교통 시뮬레이션을 이용한 공격운전이 교통류에 미치는 영향 분석)

  • PARK, Subin;KIM, Yunjong;OH, Cheol;CHOI, Saerona
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.3
    • /
    • pp.169-183
    • /
    • 2018
  • Aggressive driving leads to a greater crash potential because it threatens surrounding vehicles. This study conducted traffic simulation experiments using driving behavior data obtained from multi-agent driving simulations. VISSIM traffic simulator and surrogate safety assessment model (SSAM) were used to identify the impacts of aggressive driving on traffic stream in terms of safety and operational efficiency. Market penetration rates (MPR) of aggressive driving vehicle, coupled with various traffic conditions, were taken into consideration in analyzing the impacts. As expected, it was identified that aggressive driving vehicles tended to deteriorate the traffic safety performance. From the perspective of operational efficiency, interesting results were observable. Under level of service (LOS) A, B, and C, it was observed that the average travel speed increased with greater MPRs. Conversely, the average travel speed decreased with under LOS D and E conditions. The outcome of this study would be effectively used for developing safety-related policies for reducing aggressive driving behavior.

An Investigation for Driving Behavior on the Exit-ramp Terminal in Urban Underground Roads Using a Driving Simulator (주행 시뮬레이터를 활용한 도심 지하도로 유출연결로 접속부 주행행태 분석)

  • Jeong, Seungwon;Song, Minsoo;Hwang, Sooncheon;Lee, Dongmin;Kwon, Wantaeg
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.123-140
    • /
    • 2022
  • Even though driving behaviors in underground roads can be significantly different from ground roads, existing underground roads follow the design guidelines of ground roads. In this context, this study investigates the driving behaviors of the exit-ramp terminal of urban underground roads using a driving simulator. Virtual driving experiments were performed by analyzing scenarios between the underground and ground road environments. The experiments' driving behavior data for each geometry section are compared and validated through a statistical significance test. This test showed that the speed in the underground road environment is relatively low, and the LPM tends to move away from the adjacent tunnel wall. Based on these findings, this study suggests implications and feasible solutions for improving driver's safety in the exit-ramp terminal of the underground roads.

Impacts of Automated Vehicle Platoons on Car-following Behavior of Manually-Driven Vehicles (군집주행 환경이 비자율차량의 차량 추종에 미치는 영향분석)

  • Suh, Sanghyuk;Lee, Seolyoung;Oh, Cheol;Choi, Saerona
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.107-121
    • /
    • 2017
  • This study conducted a 3-stage survey and simulation experiment to identify the impact of vehicle platoons on car-following behavior of manually-driven vehicles. Vehicle maneuvering data obtained from driving simulations was statistically analyzed based on three measures including average speed, acceleration noise, and offset to represent the deviation of lateral movements. Results indicate that MV drivers tended to have psychological burden while driving in automated vehicle platooning environments, which resulted in different vehicle maneuvers. It is expected that the outcome of this study would be useful fundamentals in developing various traffic operations strategies for managing mixed traffic stream consisting of MVs and autonomous vehicles.

비디오 주행계의 안정성 향상을 위한 조립공차 선정에 관한 사례연구

  • Lee, Yeong-Hae;Kim, Jeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1992.04b
    • /
    • pp.615-624
    • /
    • 1992
  • 비디오의 주행계의 안정성은 비디오 품질의 중요한 요소로서 이에 영향을 주는 인자들은 다양하며 여러 인자들이 복합적으로 작용하여 비디오 테이프의 주행상에 영향을 준다. 본 연구에서는 D전자회사의 비디오 주행경로의 변동을 최소화하기 위하여 어떠한 인자를 제어하는 것이 필요한지 주요 인자의 선정문제를 회귀분석을 이용하여 결정하는법, 선정된 인자의 최적수준 조합을 결정하는 문제를 해결하는 절차와 부품의 조립허용공차의 선정절차를 제시한다.

  • PDF

Analysis of Driving and Environmental Impacts by Providing Warning Information in C-ITS Vehicles Using PVD (PVD를 활용한 C-ITS 차량 내 경고정보 제공에 따른 주행 및 환경영향 분석)

  • Yoonmi Kim;Ho Seon Kim;Kyeong-Pyo Kang;Seoung Bum Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.224-239
    • /
    • 2023
  • C-ITS (Cooperative-Intelligent Transportation System) refers to user safety-oriented technology and systems that provide forward traffic situation information based on a two-way wireless communication technology between vehicles or between vehicles and infrastructure. Since the Daejeon-Sejong pilot project in 2016, the C-ITS infrastructure has been installed at various locations to provide C-ITS safety services through highway and local government demonstration projects. In this study, a methodology was developed to verify the effectiveness of the warning information using individual vehicle data collected through the Gwangju Metropolitan City C-ITS demonstration project. The analysis of the effectiveness was largely divided into driving behavior impact analysis and environmental analysis. Compliance analysis and driving safety evaluation were performed for the driving impact analysis. In addition, to supplement the inadequate collection of Probe Vehicle Data (PVD) collected during the C-ITS demonstration project, Digital Tacho Graph ( DTG ) data was additionally collected and used for effect analysis. The results of the compliance analysis showed that drivers displayed reduced driving behavior in response to warning information based on a sufficient number of valid samples. Also, the results of calculating and analyzing driving safety indicators, such as jerk and acceleration noise, revealed that driving safety was improved due to the provision of warning information.

An Analysis of Road User Acceptance Factors for Fully Autonomous Vehicles : For Drivers and Pedestrians (완전 자율주행자동차에 대한 도로이용자 수용성 요인 분석 : 운전자 및 보행자를 대상으로)

  • Jeong, Mi-Kyeong;Choi, Mee-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.117-132
    • /
    • 2022
  • The purpose of this study is to analyze factors that affect road users' acceptance of fully autonomous vehicles (level 4 or higher). A survey was done with drivers of general cars and pedestrians who share roads with fully autonomous vehicles. Five acceptability factors were selected: trust towards technology, compatibility, policy, perceived safety, and perceived usefulness. The effect on behavioral intention was analyzed using structural equation modeling (SEM). The perceived safety and trust towards technology were found to be very important in the acceptance of fully autonomous vehicles, regardless of the respondent, and policy was not influential. Compatibility and perceived usefulness were particularly influential factors for drivers. In order to improve the acceptance by road users, securing technical completeness of fully autonomous vehicles is important. Certification and evaluation of the safe driving ability of fully autonomous vehicles should be thoroughly performed, and based on the results, it is necessary to improve the perception by road users. It is necessary to positively recognize fully autonomous vehicles through education and publicity for road users and to support their smooth interaction.

Analysis of Running Safety and Ride Comfort According to the Shape of Transition Curve (완화곡선형상별 차량주행안전성 및 승차감 분석)

  • Choi, Il-Yoon;Um, Ju-Hwan;Kim, Man-Cheol;Park, Chan-Kyoung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.509-515
    • /
    • 2010
  • Primary function of a transition curve is to accomplish gradual transition from the straight to circular curve, so that curvature changes from zero to a finite value. The transition curve enhances the running safety and ride comfort of the vehicle in curve. There are a couple of transition curve such as clothoid, cubic parabola and cosinusoidal curve, etc. In this study, running behaviors of cubic parabola and cosinusoidal curve were investigated and compared by numerical analysis result using VAMPIRE program. Ride comforts for an individual transition curve were evaluated for each transition curve and running behavior and safety were also evaluated to compare the capacity of transition curves.