• Title/Summary/Keyword: 주파수 제어

Search Result 2,255, Processing Time 0.027 seconds

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.

A Study on the Dental Hygienists' Reactions to Noise When Occurred in Dental Clinic (치과병원에서 발생하는 소음에 대한 치과위생사의 반응)

  • Choi, Mi-Suk;Ji, Dong-Ha
    • Journal of dental hygiene science
    • /
    • v.9 no.4
    • /
    • pp.453-459
    • /
    • 2009
  • The purposes of this research were to evaluate the relationships of between characteristics of noise and annoyance of dental hygienist by noise in dental clinic. To investigate the dental clinic workers' reactions to noise when occurred in dental clinic, the noise level test in dental clinic and questionnaire were taken. As a result of noise evaluation, It shows that the range of noise level was 67.7~78.3dB(A) and frequency was very high (more than 4KHz). It's seem to be begins occurrence of stamina-loss, contraction of peripheral blood vessel, decrease of adrenocortical hormones. Most of respondents were affected by noise: 67% of respondents were nervous about noise and the rest of respondents were bearable. Analysis by NR-curve showed that it was exceed the noise permit level in working space. As a result of correlation - test, the more exposed dental hygienist to noise, the more felt the unpleasantness and fatigue. It's hard to sufficient explanation to patients about the dental treatment. So it's thoughts that insufficient explanation will negative impact on the patients' satisfaction and increase competitiveness in dental clinics. To remedy a unpleasantness and fatigue of noise in dental hygienist, it's considered that making an offer the ear protection and choosing the low noise-vib. equipment and using the masking effect. Therefore, It can be provide a pleasant working environment with dental hygienist and It will have a great advantage to dental clinics to improve their competitiveness.

  • PDF

A Study on Implementation and Performance of the Power Control High Power Amplifier for Satellite Mobile Communication System (위성통신용 전력제어 고출력증폭기의 구현 및 성능평가에 관한 연구)

  • 전중성;김동일;배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.77-88
    • /
    • 2000
  • In this paper, the 3-mode variable gain high power amplifier for a transmitter of INMARSAT-B operating at L-band(1626.5-1646.5 MHz) was developed. This SSPA can amplify 42 dBm in high power mode, 38 dBm in medium power mode and 36 dBm in low power mode for INMARSAT-B. The allowable errol sets +1 dBm as the upper limit and -2 dBm as the lower limit, respectively. To simplify the fabrication process, the whole system is designed by two parts composed of a driving amplifier and a high power amplifier. The HP's MGA-64135 and Motorola's MRF-6401 were used for driving amplifier, and the ERICSSON's PTE-10114 and PTF-10021 for the high power amplifier. The SSPA was fabricated by the RP circuits, the temperature compensation circuits and 3-mode variable gain control circuits and 20 dB parallel coupled-line directional coupler in aluminum housing. In addition, the gain control method was proposed by digital attenuator for 3-mode amplifier. Then il has been experimentally verified that the gain is controlled for single tone signal as well as two tone signals. In this case, the SSPA detects the output power by 20 dB parallel coupled-line directional coupler and phase non-splitter amplifier. The realized SSPA has 41.6 dB, 37.6 dB and 33.2 dB for small signal gain within 20 MHz bandwidth, and the VSWR of input and output port is less than 1.3:1. The minimum value of the 1 dB compression point gets more than 12 dBm for 3-mode variable gain high power amplifier. A typical two tone intermodulation point has 36.5 dBc maximum which is single carrier backed off 3 dB from 1 dB compression point. The maximum output power of 43 dBm was achieved at the 1636.5 MHz. These results reveal a high power of 20 Watt, which was the design target.

  • PDF

Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System (에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구)

  • Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.209-213
    • /
    • 2019
  • Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.