• Title/Summary/Keyword: 주파수분해

Search Result 368, Processing Time 0.032 seconds

ECG Compression Structure Design Using of Multiple Wavelet Basis Functions (다중웨이브렛 기저함수를 이용한 심전도 압축구조설계)

  • Kim Tae-hyung;Kwon Chang-Young;Yoon Dong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.467-472
    • /
    • 2005
  • ECG signals are recorded for diagnostic purposes in many clinical situations. Also, In order to permit good clinical interpretation, data is needed at high resolutions and sampling rates. Therefore In this paper, we designed to compression structure using multiple wavelet basis function(SWBF) and compared to single wavelet basis function(SWBF) and discrete cosine transform(DCT). For experience objectivity, Simulation was performed using the arrhythmia data with sampling frequency 360Hz, resolution lIbit at MIT-BIH database. An estimate of performance estimate evaluate the reconstruction error. Consequently compression structure using MWBF has high performance result.

Data De-weighting in Matrix Pencil Method (매트릭스 팬슬 방법의 데이터 불균형 제거 기법)

  • Koh, Jin-Hwan;Xu, Xiaowen;Ryu, Beong-Ju;Lee, Jae-Hun;Lee, Jung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8A
    • /
    • pp.741-747
    • /
    • 2011
  • Matrix Pencil method is one of the promising method to estimate DOA in non-stationary, multi-path coherent environment. Not only the Matrix Pencil Method offers better resolution than the conventional approach using covariance matrix, but also it is computationally very efficient. In this paper, we presented an effect of unbalanced data weighting in the formulation of the Matrix Pencil method. A new formulation has been suggested to mitigate the effect of unbalanced data weighting. Numerical simulation demonstrated that the proposed method can successfully eliminate the problem of unbalanced data weighting.

The Decomposition of EMG signals using Template Matiching Method in the frequency domain (주파수 템플릿 정합법을 사용한 EMG 신호 분해)

  • Park, S.H.;Lee, Y.W.;Go, H.W.;Ye, S.Y.;Eom, S.H.;Nam, K.G.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.55-58
    • /
    • 1997
  • In this paper, we study a signal processing method which extracts each MUAP(motor unit action potential) from EMG(Electromyogram) interference pattern or clinical diagnostic purposes. First of all, differential digital filtering is selected or eliminating the spike components of the MUAP's from the background noise. And, the algorithm identifies the spikes over the certanin threshold by template matching in frequency domain. After missing or false firing actor is cut off at the IPI(inter pulse interval) histogram, we averages the MUAP waveforms from the raw signal using the identified spikes as triggers, and Finally, measures their amplitudes, durations, and numbers of phases. Specially, We introduce algorithm performed by template matching in the frequency domain. A typical 3-s signal recorded from the biceps brachii muscle using a conventional needle electrode during a isometric contraction is used. Finally, the method decomposed five simultaneous active MUAP's from original EMG signal.

  • PDF

A Wavelet-based Blind Watermarking Scheme Using Pixel Correlation of Low Sub-band (저주파 대역의 픽셀 상관도를 이용한 웨이블릿 기반 블라인드 워터마킹 기법)

  • Yoo, Kil-Sang;Jahng, Sung-Gahb;Lee, Won-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1298-1305
    • /
    • 2004
  • Most watermarking techniques embed watermarks in the middle frequency range for robustness and invisibility. In our proposed watermarking algorithms embed the gaussian sequence watermark into low frequency area of the wavelet transform domain because the histogram of low sub-band area is composed by similar coefficients. Also, our proposed scheme doesn't need the original image in extraction procedure The experimental results show good robustness against the Check Mark benchmarking tools.

A signal processing technique for interferometric fiber-optic sensors (간섭형 광섬유센서의 신호처리 기법)

  • 예윤해
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.365-372
    • /
    • 1995
  • A signal processing technique for interferometric fiber-optic sensors is proposed. It does not require a any special optic components such as phase modulator, $3times3$ couplers,to obtain the full sensitivity of the interferometer. Instead, it requires a reference interferometer for phase referencing and a reference mirror for intensity referencing, but intensity referencing can be done without using the r reference mirror. The new technique utilizes the frequency chirping of the laser diode to process t the sensor signal with both wide dynamic range and high sensitivity of the interferometer. It was a applied to an internal-mirrored FP interferometric temperature sensor to obtain the system noise of $4\times10^{-3\circ}C$ from I cm FP Interferometor sensor device.

  • PDF

Efficient DFT/DCT Computation for OFDM in Cognitive Radio System (Cognitive Radio 시스템의 OFDM을 위한 효율적 DCT/DFT 계산에 관한 연구)

  • Chen, Zhu;Kim, Jeong-Ki;Yan, Yi-Er;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.97-102
    • /
    • 2008
  • In this paper, we address the OFDM based on DFT or DCT in Cognitive Radio system. An adaptive OFDM based on DFT or DCT in Cognitive Radio system has the capacity to nullify individual carriers to avoid interference to the licensed users. Therefore, there could be a considerably large number of zero-valued inputs/outputs for the IDFT/DFT or IDCT/DCT on the OFDM transceiver. Hence, the standard methods of DFT and DCT are no longer efficient due to the wasted operations on zero. Based on this observation, we present a transform decomposition on two dimensional(2-D) systolic array for IDFT/DFT and IDCT/DCT, this algorithm can achieve an efficient computation for OFDM in Cognitive Radio system

AM-FM Decomposition and Estimation of Instantaneous Frequency and Instantaneous Amplitude of Speech Signals for Natural Human-robot Interaction (자연스런 인간-로봇 상호작용을 위한 음성 신호의 AM-FM 성분 분해 및 순간 주파수와 순간 진폭의 추정에 관한 연구)

  • Lee, He-Young
    • Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.53-70
    • /
    • 2005
  • A Vowel of speech signals are multicomponent signals composed of AM-FM components whose instantaneous frequency and instantaneous amplitude are time-varying. The changes of emotion states cause the variation of the instantaneous frequencies and the instantaneous amplitudes of AM-FM components. Therefore, it is important to estimate exactly the instantaneous frequencies and the instantaneous amplitudes of AM-FM components for the extraction of key information representing emotion states and changes in speech signals. In tills paper, firstly a method decomposing speech signals into AM - FM components is addressed. Secondly, the fundamental frequency of vowel sound is estimated by the simple method based on the spectrogram. The estimate of the fundamental frequency is used for decomposing speech signals into AM-FM components. Thirdly, an estimation method is suggested for separation of the instantaneous frequencies and the instantaneous amplitudes of the decomposed AM - FM components, based on Hilbert transform and the demodulation property of the extended Fourier transform. The estimates of the instantaneous frequencies and the instantaneous amplitudes can be used for modification of the spectral distribution and smooth connection of two words in the speech synthesis systems based on a corpus.

  • PDF

Correlation-based Robust Blind Watermarking (상관도 기반의 강인한 블라인드 워터마킹)

  • Joo, Snag-Hyun;Seo, Yong-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.479-484
    • /
    • 2003
  • We propose a blind watermarking method that embeds a binary pseudo-random sequence (watermarks), (-1, 1), into wavelet dc components, while most watermarking techniques embed watermarks in the middle frequency range for robustness and fidelity. In our scheme, the watermarks are embedded into particular locations to be selected by a key, where some watermark embeddings are skipped to avoid severe degradation in quality. Our robustness is compared to some results registered to the ChechMark [1] that is one of the most popular benchmarking tools.

Position Estimation of Underwater Acoustic Source Using Pulsed CW Signal (Pulsed CW 신호를 사용하는 수중 음원의 위치 추정을 위한 시간지연차 추정법)

  • 최영근;손권;도경철;김기만
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.514-520
    • /
    • 2004
  • There are many techniques for underwater source localization. These are the methods based on TDOA (Time Difference Of Arrival) estimation. beamforming techniques and high resolution techniques, etc. In this Paper we estimate the underwater source position using MCPSP (Modified Cross Power Spectrum Phase) function that is calculated on frequency domain using sensors of small number. However, the performances of the localizing method based on MCPSP function drops greatly in the case of CW (Continuous Wave) signal . In this Paper we proposed the TDOA estimation method for pulsed CW signal. In the Proposed method we composed of new segment including a edge of ping. This segment was computed by short-time energy detection. With theoretical representation the performances of the proposed method were analyzed under various environment.

Construction of Feed-back Type Flux-gate Magnetometer (피드백형 플럭스게이트 마그네토미터 제작)

  • Son, De-Rac
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.45-48
    • /
    • 2012
  • Feed-back type 3-axis flux-gate magnetometer using Co-based amorphous ribbon (Metglass$^{(R)}$2714A) was constructed in this work. Measuring range of magnetic field and frequency were ${\pm}100\;{\mu}T$ and dc~10 Hz respectively. For the interface to computer, microcontroller and 24 bit ADC (Analog to Digital Converter) were employed and resolution of digital output was 0.1 nT. Magnetometer noise of analog output was 5 pT/$\sqrt{Hz}$ at 1 Hz. Digital output of the magnetometer showed linearity of $1{\times}10^{-4}$ and the offset drift was smaller than 0.2 nT during 1 h.