• Title/Summary/Keyword: 주축 베어링

Search Result 110, Processing Time 0.018 seconds

Detection of Main Spindle Bearing Conditions in Machine Tool via Neural Network Methodolog (신경회로망을 이용한 공작기계 주축용 베어링의 고장검지)

  • Oh, S.Y.;Chung, E.S.;Lim, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.33-39
    • /
    • 1995
  • This paper presents a method of detecting localized defects on tapered roller bearing in main spindle of machine tool system. The statistical parameters in time-domain processing technique have been calculated to extract useful features from bearing vibration signals. These features are used by the input feature of an artificial neural network to detect and diagnose bearing defects. As a results, the detection of bearing defect conditions could be successfully performed by using an artificial neural network with statistical parameters of acceleration signals.

  • PDF

Study on Controller Design for an Active Magnetic Bearing Milling Spindle Using Chatter Stability Analysis (채터 안정성 해석을 이용한 자기베어링 밀링 주축의 제어기 설계 연구)

  • 경진호;박종권;노승국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.440-445
    • /
    • 2002
  • The characteristic equation for regenerative chatter loop including a delay element replaced by a rational function is presented by a linear differential-difference equation, accounting for the dynamics of the AMB controllers, the uncut chip thickness equation and the cutting process as well as the rigid spindle dynamics itself. The chatter stability analysis of a rigid milling spindle suspended by 5-axes active magnetic bearings(AMBs) is also performed to investigate the influences of the damping and stiffness coefficients of AMBs on the chatter free cutting conditions, as they are allowed to vary within the stable region formed by the AMB control gains. Several cutting tests varying the derivative gains of the AMB were performed to investigate the regenerative chatter vibrations, and it was concluded that the theoretical analysis results are in good consistency with the test results.

  • PDF

항공용 가스터빈 엔진에서의 트라이볼로지

  • 김기태
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.1-9
    • /
    • 1997
  • 인류가 지구상에 존재하기 이전에도 바다 속에는 오징어와 같이 자신의 힘만으로 분사 추진을 하여 움직이는 생물이 존재하였음에도 불구하고 인류는 이러한 반작용 원리를 이용한 항공용 가스터빈 엔진을 고안하는데 1900년 이상의 세월을 보내야 하였으며, 이 긴 세월 동안 많은 장치들이 고안되었다. 그러나, 실제로 이러한 원리를 사용한 현재와 같은 가스터빈 엔진의 개발은 1940년대 중반에야 가능하게 되었다. 이후 소형이면서 높은 추력을 발생시키기 위하여 많은 노력이 이루어져 왔으며, 이를 위하여 가스터빈 엔진의 주축 베어링, gearbox, seal 및 윤활 시스템 등은 더욱 큰 부담을 가질 수 밖에 없었다. 따라서, 이러한 어려움을 해결하고 보다 높은 추력을 발생시키는 가스터빈을 개발하는데 트라이볼로지의 역할이 중요하다고 할 수 있다. 가스터빈에서의 트라이볼로지의 적용 분야는 main-shift bearing, lubrication system, gearbox 및 seal등을 들 수 있으나, bearing과 lubrication을 중심으로 기술하고자 한다.

Evaluation of Precision Cutting Performance by Bending Vibration Made Shapes of Main Spindle (주축 진동특성을 이용한 정밀가공 성능평가)

  • Park, Bo-Yong;Kim, Jong-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.191-197
    • /
    • 1993
  • In this paper, experimental studies are mainly carried out for the evaluation of precision cutting performance of a machine tool spincle running at high speed with the low load, in consideration of the bending vibration characteristics. As a result a process in presented for the practical application in the machine tools industry to evaluate the cutting performance in design stage of spindles.

  • PDF

Correlation between Unbalance Variation and Cutting Surface Condition of Roller Bearing-Structured Main Spindles (롤러베어링 구조형 주축 회전체의 언밸런스 변동과 절삭표면상태 연관성에 관한 연구)

  • Ha, Jeong-ung;Park, Dong-hui;Park, Hwang-gi;Jeon, Seung-min;Hong, Jin-pyo;Yoon, Sang-hwan;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.107-115
    • /
    • 2020
  • The rotation accuracy of the main spindle that determines the accuracy of CNC machine tools is closely related to the quality of production because it directly affects the shape error and surface roughness of the workpiece. Therefore, the main spindle requires high rotation accuracy, rigidity, and rotation technology. This rotation accuracy is greatly affected by the bearing, center alignment between rotating parts, assembly tolerance, and unbalance of the rotation mass. In this study, the effects of the unbalance of the rotation mass of the main spindle on the rotation accuracy were investigated experimentally. In particular, we tried to study the technical reasons for improving the unbalance of the main spindle and maintaining the rotation accuracy as we verified the correlation between the vibration characteristics of CNC machine tools due to the specifically set unbalance amount and the surface roughness of the workpiece.

A Study on the Helicopter Composite Blade Impact Loads (헬리콥터 복합재 블레이드 충돌하중 연구)

  • Lee, Hyun-Cheol;Jeon, Boo-Il;Moon, Jang-Soo;Yee, Seok-June
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.181-186
    • /
    • 2009
  • The objective of this study is ensuring safety of cabin when the blade impacts into a obstacle by verifying safety of the rotor mast and the transmission using impact loads calculated from the simulation. The rotor mast shall not fail and the transmission shall not be displaced into occupiable space when the main rotor composite blade impact into a 8 inch rigid cylinder in diameter on the outer 10% of the blade at operational rotor speed. To calculate the reaction loads at the spherical bearing and lead-lag damper, blade impact analysis was performed with FE model consist of composite blade, tree(or rigid cylinder) using elastic-plastic with damage material and several contact surfaces which were created to describe a progress of actual failure. Also, the reaction loads were investigated in change of blade rotation speed and pitch angle.

A Combined Bearing Arrangement for High Damping Spindle Systems (고감쇠 주축 시스템을 위한 베어링의 복합배열에 관한 연구)

  • Lee, C.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.139-145
    • /
    • 1996
  • The machining accuracy and performance is largely influenced by the static, dynamic and thermal characteristics of spindle systems in machine tools, because the spindle system is a intermedium for cutting force from tool and machine powef from motor. Large cutting force and power are transmitted by bearing with a point or line contact. So, the spindle system is the static and dynamic weakest point in machine structure. For improvement of static stiffness of spindle system can be changed design parameters, such as diameter of spindle, stiffness of bearing and bearing span. But for dynamic stiffness, the change of the design parameters are not useful. In this paper, the combined bearing arrangement is suggested for high damping spindle system. The combined bearing arrangement is composed of tandem double back to back arrangement type ball bearins and a high damping hydrostatic bearing. The variation of static deflection and amplitude in first natural frequency is evaluated with the location of hydrostatic bearing between front and rear ball bearing. The optimized location of hydrostatic bearing for high static and dynamic stiffness is determined rapidly and exactly using the mode shape and transfer function of spindle. The calculation of damping effect on vibration by unbalance of grinding wheel and pulley in optimized spindle system is carried out to verify the validity of the combined bearing arrangement. Finally, the simulation of grinding process show that the surface roughness of workpiece with high damping spindle system is 60% better than with ball bearing spindle system.

  • PDF

A Study on the Development of Hydrostatic High Speed Spindle for Grinding Machine (고속 연삭기용 유정압 스핀들 개발에 관한 연구)

  • Kim, Jeong-Suk;Cho, Yong-Kwon;Park, Jin-Hyo;Moon, Hong-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.96-100
    • /
    • 2011
  • The hydrostatic bearings have a relatively small run-out comparing to its shape error by fluid film effect in hydrostatic state as like pneumatic bearing and have a high stiffness, load capacity and damping characteristics. As there is no maintenance and semipermanent in these bearing type, it has been usually adopted as main spindle bearing for grinding machine. In this thesis, to develop hydrostatic bearing for high speed spindle, the cooler setting temperature, bearing clearance and nozzle pressure of belt-driven hydrostatic bearing are investigated. The bearing temperature is decreased, as the cooler setting temperature is lower, nozzle pressure is higher and bearing clearance is wider. The front temperature of bearing is nearly $8^{\circ}C$ higher than the rear one up to 13,000 rpm of spindle revolution. The thermal deflection of X-axis is ${\pm}16\;{\mu}m$ in range of 12,000 rpm-13,000 rpm. Therefore, it is conformed that the built-in motor hydrostatic bearing can be used to high speed spindle.

Development of a High-speed Line Center using Linear Motor Feed System (리니어 모터 이송계를 이용한 초고속 라인 센터 개발)

  • Baek, Young-Jong;Heo, Soon;Moon, Hong-Man;Choi, Dae-Bong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.26-31
    • /
    • 2002
  • The recent machine tools are requested so high-quality processing and productivity increasing. Therefore, it is so necessary to develop technology fur high-speed and high-precision. This thesis touches on the development of high speed and intellectual line center. At first, the line center is necessary that strong structure, compact structure and light weight design for high-speed processing and transfer. So, it is necessary that examination of new materials and structures for light-weight and control devices for precision processing. So. it is going to make mention of the process of 1st model production for the above-mentioned based on test model production and evaluation.

  • PDF

Thermally-induced Mechanical Behavior of the Press-fitted Cylindrical Structure (죄임새 결합된 원통구조물의 열전도에 의한 기계적 특성변화)

  • 김선민;이선규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.139-148
    • /
    • 1998
  • Internal and external heat sources will cause to deform to machine elements in the contact joint of structure, which results in the change of contact pressure distribution different from initial assembly. Heat induced variations of contact pressure will change the static and dynamic properties such as contact stiffness, damping as well as contact heat conduction in the structure In order to design and control the intelligent machine tool operating in variant conditions more sophisticatedly, the good prediction for the changes of prescribed properties are strongly required especially in the contact elements adjacent to the rotational or linear bearing. This paper presents some computational and experimental results in regard to static and dynamic characteristics of the press-fitted bush and shaft assembly which is a model of the bearing innerrace and shaft assembly. In the condition of heat generation on the outer surface of the bush, the effects of changes in the negative clearance and the heat flux on pressure distribution and dynamic properties are investigated. Results of this study show that the edge effect of the bush and the initial clearance have effects on the transient dynamic characteristics significantly.

  • PDF