• 제목/요약/키워드: 주축 모터 출력

검색결과 2건 처리시간 0.015초

주축 모터 출력 특성에 근거한 무인 선삭 가공 기술 (An Unmanned Turning Process Technique Based on Spindle Motor Power Characteristics)

  • 박장호;허건수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.8-13
    • /
    • 2001
  • In the turning process, the feed is usually selected by a machining operator considering workpiece, cutting tool and depth of cut. Even if this selection can avoid power saturation or tool breakage, it is usually conservative compared to the capacity of the machine tools and can reduce the productivity significantly. This paper proposes a selection method of the feed and the reference cutting force based on MRR(material removal rate), maximum spindle power and specific energy. In order to estimate and control cutting force accurately in transient and steady state, this study utilizes a synthesized cutting force estimation method and a Fuzzy controller. The experimental results present that these systems can be useful for the FMS(flexible manufacturing system) and unmanned automation system.

  • PDF

주축 모터 출력 특성에 근거한 무인 선삭 제어 (Unmanned Turning Process Control Based on Spindle-Motor Power Characteristics)

  • 박장호;홍성함;이병휘;허건수
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1446-1452
    • /
    • 2002
  • In the turning process, the feed is usually selected by a machining operator considering workpiece, cutting tool and depth of cut. Even if this selection can avoid power saturation or tool breakage, it is usually conservative compared to the capacity of the machine tools and can reduce the productivity significantly. This paper proposes a selection method of the feed and the reference cutting force based on MRR(material removal rate), maximum spindle power and specific energy. In order to estimate and control cutting force accurately in transient and steady state, this study utilizes a synthesized cutting force estimation method and a Fuzzy controller. The experimental results show that these systems can be useful for the unmanned turning process.