• Title/Summary/Keyword: 주조 오스테나이트 스테인리스강

Search Result 7, Processing Time 0.025 seconds

Evaluation of Material Properties due to Thermal Embrittlement in CF8M Cast Austenitic Stainless Steel (CF8M 주조 오스테나이트 스테인리스강의 열취화에 따른 재료물성치 평가)

  • Kim, C.;Park, H.B.;Jin, T.E.;Jeong, I.S.;Seok, C.S.;Park, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.131-136
    • /
    • 2003
  • CF8M cast austenitic stainless steel is used for several components such as primary coolant piping, elbow, pump casing, and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. In this study, three kinds of the aged CF8M specimen were prepared using an artificially simulated aging method. The objective of this study is to summarize the method of estimating ferrite contents, Charpy impact energy and J-R curve, and to evaluate the thermal embrittlement of the CF8M cast austenitic stainless steel piping used in the domestic nuclear power plants.

  • PDF

A study on the thermal embrittlement of Nb-containing cast duplex stainless steel (Nb이 첨가된 주조 2상 스테인리스강의 열취성에 관한 연구)

  • Song, Myeong-Ho;Kim, Yong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.7 no.7
    • /
    • pp.623-631
    • /
    • 1997
  • 본 연구에서는 주조 2상 스테인리스강의열시효에 대한 시효온도, 시효시간 및 Nb함유량의 영향을 관찰하기 위해 기계적 성질 및 조직을 조사하였으며 Nb을 함유한 주조 2상 스테인리스강의 파괴기구를 규명하기 위해 SEM에 의한 파단면 관찰과 WDS성분분석을 통해 파괴기구의 특성을 고찰하였다. 시효온도와 시효시간이 증가함에 따라 페라니트으 미소경도가 증가하였으며 항복강도의 경우 시효온도와 시효시간에는 영향을 받지 않았으나 Nb을 함유한 재료들이 Nb을 함유치 않은 재료들에 비해 다소 낮은 항복강도 값을 보였다. 충격흡수에너지 값은 시효시간 및 시효온도의 증가에 따라 시험된 모든 재료에서 저하되었는데 0.4% Nb을 함유하는 경우 Nb을 약간 함유하거나 함유치 않은 재료들에 비해 시효시간에 따라 급격한 감소 경향을 보였다. 파단면 관찰결과 페라이트 기지 또는 페라이트/오스테나이트 상경계에서 석출된 VbC를 비롯한 탄화물들이 취성저항성을 낮추는데 크게 기여했음을 알 수 있었다.

  • PDF

Evaluation of Thermal Embrittlement Susceptibility in Cast Austenitic Stainless Steel Using Artificial Neural Network (인공신경망을 이용한 주조 스테인리스강의 열취화 민감도 평가)

  • Kim, Cheol;Park, Heung-Bae;Jin, Tae-Eun;Jeong, Ill-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1174-1179
    • /
    • 2003
  • Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. This study shows that ferrite content can be predicted by use of the artificial neural network. The neural network has trained learning data of chemical components and ferrite contents using backpropagation learning process. The predicted results of the ferrite content using trained neural network are in good agreement with experimental ones.

  • PDF

Evaluation of Thermal Embrittlement Susceptibility in Cast Austenitic Stainless Steel Using Artificial Neural Network (인공신경망을 이용한 주조 스테인리스강의 열취화 민감도 평가)

  • Kim, Cheol;Park, Heung-Bae;Jin, Tae-Eun;Jeong, Ill-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.460-466
    • /
    • 2004
  • Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. This study shows that ferrite content can be predicted by use of the artificial neural network. The neural network has trained teaming data of chemical components and ferrite contents using backpropagation learning process. The predicted results of the ferrite content using trained neural network are in good agreement with experimental ones.

Study on the Austenite Formation and Mechanical Properties of AGI (Austempered Gray Cast Iron) According to Aluminum Content (알루미늄 함량에 따른 AGI (Austempered Gray Cast Iron)의 오스테나이트 형성 및 기계적 특성에 관한 연구)

  • Kim, Dong-Hyuk
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.543-549
    • /
    • 2021
  • Aluminum cast iron has excellent oxidation resistance and good resistance to sulfide and corrosion. Compared to Ti and Ni alloys, it is expected to be a substitute material for structural materials and stainless steels because it is relatively inexpensive to use Fe, which is a non-strategic element. This results in a weight reduction effect of about 30% as compared to the use of stainless steel. With regard to aluminum as an alloying material, it is an element that has been widely used for the alloying of cast iron in recent years. Practical use has been delayed owing to the resulting lack of ductility at room temperature and the sharp decrease in the strength above 600℃ of this alloy, however. The cause of the weak room temperature ductility is known to be environmental embrittlement by hydrogen, and the addition of various alloying elements has been attempted in order to mitigate these shortcomings. Although alloying elements such as vanadium, chromium, and manganese are mainly used to increase the hardness and wear resistance of gray cast iron, the price of finished products containing these elements and the problems associated with alloys with this material impose many limitations.

The Behavior of Pitting Corrosion Associated with Microstructure of a Cast Lean Duplex Stainless Steel in Chloride Environments (염화물 환경에서 린 듀플렉스 스테인리스 주강의 미세조직과 연계한 공식 거동)

  • In-Sung Lee;Soon-Tae Kim;Chae-Jin Nam;Seung-Man Yang;In-Sung Cho;Seung-Mok Yoo
    • Journal of Korea Foundry Society
    • /
    • v.43 no.5
    • /
    • pp.230-240
    • /
    • 2023
  • The pitting corrosion behavior of 329LD cast lean duplex stainless steel and CF3M cast austenitic stainless steel was investigated in chloride environments. The pitting corrosion resistance of the 329LD alloy was superior to that of the CF3M alloy because the pitting potential, passive region, and critical pitting temperature of the low Ni-low Mo 329LD alloy were higher than those of the high Ni-medium Mo commercial CF3M alloy. There are two main reasons for the enhancement of the pitting corrosion resistance of high Cr-low Momedium N 329LD alloy compared to the low Cr-medium Mo CF3M alloy: First, the pitting resistance equivalent number (PRENδ+γ) value of the 329LD alloy is higher than that of the CF3M alloy. Second, the passive region of the 329LD alloy is larger than that of the CF3M alloy. It indicates that the synergistic effect of the three elements by adding high Cr and low Mo-medium N to the 329LD alloy enhances the passivity of the passive film, thereby increasing the pitting corrosion resistance. It was verified that based on the PRENγ of austenite (γ) and PRENδ of ferrite (δ) values calculated using an N-factor of 16, the pitting corrosion of the 329LD alloy was selectively initiated at the γ-phases because PRENγ value of austenite (γ) was smaller than that of ferrite (δ), and finally propagated from the γ-phase to the δ-phase.

Austenite Precipitation Behaviors with Solidification Rate and N Solubility in Cast Duplex Stainless Alloys (주조용 이상스테인리스강에서 응고속도 및 질소고용도에 따른 오스테나이트 석출 거동)

  • Lee, Jong-Yeop;Lee, Je-Hyun;Kim, Sang-Sik;Choi, Byung-Hak;Kim, Sung-Jun;Son, Hee-Young
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.654-659
    • /
    • 2007
  • Austenite precipitation behavior was studied with solidification rates and alloying contents, N and Cr, in duplex stainless steels by directional solidification. Directional solidification experiments were carried out with solidification rates, $1{\sim}100mm/s$, and N and Cr contents, $0{\sim}0.27wt.%,\;25{\sim}28wt.%$ respectively, in a duplex stainless steel, CD4MCU. As the solidification rate increases, the dendrite spacing reduced and the austenite phase in the ferrite matrix became finer. The volume fraction of austenite phase increased and its shape went to be round with increasing nitrogen contents in duplex stainless alloys. The Cr alloying element, even though it is a ferrite former, showed to enhance the nitrogen solubility in the alloy and caused the austenite round and finer. Also, Cr was supposed to decrease the austenite volume fraction, but it increased the austenite slightly due to increasing nitrogen solubility during solidification.