• Title/Summary/Keyword: 주제연관성

Search Result 252, Processing Time 0.022 seconds

A Study on Text Mining Methods to Analyze Civil Complaints: Structured Association Analysis (민원 분석을 위한 텍스트 마이닝 기법 연구: 계층적 연관성 분석)

  • Kim, HyunJong;Lee, TaiHun;Ryu, SeungEui;Kim, NaRang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.3
    • /
    • pp.13-24
    • /
    • 2018
  • For government and public institutions, civil complaints containing direct requirements of citizens can be utilized as important data in developing policies. However, it is difficult to draw accurate requirements using text mining methods since the nature of the complaint text is unstructured. In this study, a new method is proposed that draws the exact requirements of citizens, improving the previous text mining in analyzing the data of civil complaints. The new text-mining method is based on the principle of Co-Occurrences Structure Map, and it is structured by two-step association analysis, so that it consists of the first-order related word and a second-order related word based on the core subject word. For the analysis, 3,004 cases posted on the electronic bulletin board of Busan City for the year 2016 are used. This study's academic contribution suggests a method deriving the requirements of citizens from the civil affairs data. As a practical contribution, it also enables policy development using civil service data.

Trend of Research and Industry-Related Analysis in Data Quality Using Time Series Network Analysis (시계열 네트워크분석을 통한 데이터품질 연구경향 및 산업연관 분석)

  • Jang, Kyoung-Ae;Lee, Kwang-Suk;Kim, Woo-Je
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.6
    • /
    • pp.295-306
    • /
    • 2016
  • The purpose of this paper is both to analyze research trends and to predict industrial flows using the meta-data from the previous studies on data quality. There have been many attempts to analyze the research trends in various fields till lately. However, analysis of previous studies on data quality has produced poor results because of its vast scope and data. Therefore, in this paper, we used a text mining, social network analysis for time series network analysis to analyze the vast scope and data of data quality collected from a Web of Science index database of papers published in the international data quality-field journals for 10 years. The analysis results are as follows: Decreases in Mathematical & Computational Biology, Chemistry, Health Care Sciences & Services, Biochemistry & Molecular Biology, Biochemistry & Molecular Biology, and Medical Information Science. Increases, on the contrary, in Environmental Sciences, Water Resources, Geology, and Instruments & Instrumentation. In addition, the social network analysis results show that the subjects which have the high centrality are analysis, algorithm, and network, and also, image, model, sensor, and optimization are increasing subjects in the data quality field. Furthermore, the industrial connection analysis result on data quality shows that there is high correlation between technique, industry, health, infrastructure, and customer service. And it predicted that the Environmental Sciences, Biotechnology, and Health Industry will be continuously developed. This paper will be useful for people, not only who are in the data quality industry field, but also the researchers who analyze research patterns and find out the industry connection on data quality.

Keyword Network Visualization for Text Summarization and Comparative Analysis (문서 요약 및 비교분석을 위한 주제어 네트워크 가시화)

  • Kim, Kyeong-rim;Lee, Da-yeong;Cho, Hwan-Gue
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.139-147
    • /
    • 2017
  • Most of the information prevailing in the Internet space consists of textual information. So one of the main topics regarding the huge document analyses that are required in the "big data" era is the development of an automated understanding system for textual data; accordingly, the automation of the keyword extraction for text summarization and abstraction is a typical research problem. But the simple listing of a few keywords is insufficient to reveal the complex semantic structures of the general texts. In this paper, a text-visualization method that constructs a graph by computing the related degrees from the selected keywords of the target text is developed; therefore, two construction models that provide the edge relation are proposed for the computing of the relation degree among keywords, as follows: influence-interval model and word- distance model. The finally visualized graph from the keyword-derived edge relation is more flexible and useful for the display of the meaning structure of the target text; furthermore, this abstract graph enables a fast and easy understanding of the target text. The authors' experiment showed that the proposed abstract-graph model is superior to the keyword list for the attainment of a semantic and comparitive understanding of text.

WV-BTM: A Technique on Improving Accuracy of Topic Model for Short Texts in SNS (WV-BTM: SNS 단문의 주제 분석을 위한 토픽 모델 정확도 개선 기법)

  • Song, Ae-Rin;Park, Young-Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • As the amount of users and data of NS explosively increased, research based on SNS Big data became active. In social mining, Latent Dirichlet Allocation(LDA), which is a typical topic model technique, is used to identify the similarity of each text from non-classified large-volume SNS text big data and to extract trends therefrom. However, LDA has the limitation that it is difficult to deduce a high-level topic due to the semantic sparsity of non-frequent word occurrence in the short sentence data. The BTM study improved the limitations of this LDA through a combination of two words. However, BTM also has a limitation that it is impossible to calculate the weight considering the relation with each subject because it is influenced more by the high frequency word among the combined words. In this paper, we propose a technique to improve the accuracy of existing BTM by reflecting semantic relation between words.

A Study on the Application of Topic Modeling for the Book Report Text (독후감 텍스트의 토픽모델링 적용에 관한 탐색적 연구)

  • Lee, Soo-Sang
    • Journal of Korean Library and Information Science Society
    • /
    • v.47 no.4
    • /
    • pp.1-18
    • /
    • 2016
  • The purpose of this study is to explore application of topic modeling for topic analysis of book report. Topic modeling can be understood as one method of topic analysis. This analysis was conducted with texts in 23 book reports using LDA function of the "topicmodels" package provided by R. According to the result of topic modeling, 16 topics were extracted. The topic network was constructed by the relation between the topics and keywords, and the book report network was constructed by the relation between book report cases and topics. Next, Centrality analysis was conducted targeting the topic network and book report network. The result of this study is following these. First, 16 topics are shown as network which has one component. In other words, 16 topics are interrelated. Second, book report was divided into 2 groups, book reports with high centrality and book reports with low centrality. The former group has similarities with others, the latter group has differences with others in aspect of the topics of book reports. The result of topic modeling is useful to identify book reports' topics combining with network analysis.

Inquiry and Epistemic Rationality (탐구와 인식적 합리성)

  • Kim, Ki-Hyeon
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.3
    • /
    • pp.245-254
    • /
    • 2007
  • It is an orthodox in epistemology that only those things that affect the truth conduciveness of a belief are relevant to the epistemic rationality of the belief. I criticize this orthodox. In this paper, 1 claim that the epistemic worth of a subject affects the epistemic rationality of inquiries and resulting beliefs. More specifically, I argue that it is epistemically irrational to conduct an inquiry when it is about something unworthy of knowing, and that the epistemic irrationality of an inquiry in this sense makes the resulting beliefs epistemically irrational. After presenting my argument, I defend it from various possible criticisms. Then I explicate the implications of my argument that opposes the core assumptions of contemporary epistemology.

  • PDF

Sentence Cohesion & Subject driving Keywords Extraction for Document Classification (문서 분류를 위한 문장 응집도와 주어 주도의 주제어 추출)

  • Ahn Heui-Kook;Roh Hi-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.463-465
    • /
    • 2005
  • 문서분류 시 문서의 내용을 표현하기 위한 자질로서 사용되는 단어의 출현빈도정보는 해당 문서의 주제어를 표현하기에 취약한 점을 갖고 있다. 즉, 키워드가 문장에서 어떠한 목적(의미)으로 사용되었는지에 대한 정보를 표현할 수가 없고, 문장 간의 응집도가 강한 문장에서 추출되었는지 아닌지에 대한 정보를 표현할 수가 없다. 따라서, 이 정보로부터 문서분류를 하는 것은 그 정확도에 있어서 한계를 갖게 된다. 본 논문에서는 이러한 문서표현의 문제를 해결하기위해, 키워드를 선택할 때, 자질로서 문장의 역할(주어)정보를 추출하여 가중치 부여방식을 통하여 주어주도정보량을 추출하였다. 또한, 자질로서 문장 내 키워드들의 동시출현빈도 정보를 추출하여 문장 간 키워드들의 연관성정도를 시소러스에 담아내었다. 그리고, 이로부터 응집도 정보를 추출하였다. 이 두 정보의 통합으로부터 문서 주제어를 결정함으로서, 문서분류를 위한 주제어 추출 시 불필요한 키워드의 삽입을 줄이고, 동시 출현하는 키워드들에 대한 선택 기준을 제공하고자 하였다. 실험을 통해 한번 출현한 키워드라도, 문장을 주도하는 주어로서 사용될 경우와 응집도 가중치가 높을 경우에 주제어로서의 선택될 가능성이 향상되고, 문서분류를 위해 좀 더 세분화된 키워드 점수화가 가능함을 확인하였다. 따라서, 선택된 주제어가 문서분류의 정확도에 있어서 향상을 가져올 수 있을 것으로 기대한다.

  • PDF

Analyzing Topic Trends and the Relationship between Changes in Public Opinion and Stock Price based on Sentiment of Discourse in Different Industry Fields using Comments of Naver News (네이버 뉴스 댓글을 이용한 산업 분야별 담론의 감성에 기반한 주제 트렌드 및 여론의 변화와 주가 흐름의 연관성 분석)

  • Oh, Chanhee;Kim, Kyuli;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.257-280
    • /
    • 2022
  • In this study, we analyzed comments on news articles of representative companies of the three industries (i.e., semiconductor, secondary battery, and bio industries) that had been listed as national strategic technology projects of South Korea to identify public opinions towards them. In addition, we analyzed the relationship between changes in public opinion and stock price. 'Samsung Electronics' and 'SK Hynix' in the semiconductor industry, 'Samsung SDI' and 'LG Chem' in the secondary battery industry, and 'Samsung Biologics' and 'Celltrion' in the bio-industry were selected as the representative companies and 47,452 comments of news articles about the companies that had been published from January 1, 2020, to December 31, 2020, were collected from Naver News. The comments were grouped into positive, neutral, and negative emotions, and the dynamic topics of comments over time in each group were analyzed to identify the trends of public opinion in each industry. As a result, in the case of the semiconductor industry, investment, COVID-19 related issues, trust in large companies such as Samsung Electronics, and mention of the damage caused by changes in government policy were the topics. In the case of secondary battery industries, references to investment, battery, and corporate issues were the topics. In the case of bio-industries, references to investment, COVID-19 related issues, and corporate issues were the topics. Next, to understand whether the sentiment of the comments is related to the actual stock price, for each company, the changes in the stock price and the sentiment values of the comments were compared and analyzed using visual analytics. As a result, we found a clear relationship between the changes in the sentiment value of public opinion and the stock price through the similar patterns shown in the change graphs. This study analyzed comments on news articles that are highly related to stock price, identified changes in public opinion trends in the COVID-19 era, and provided objective feedback to government agencies' policymaking.

Sentence generation model with neural attention (Neural Attention을 반영한 문장 생성 모델)

  • Lee, Seihee;Lee, Jee-Hyung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.17-18
    • /
    • 2017
  • 자연어 처리 분야에서 대화문 생성, 질의응답 등과 같은 문장생성과 관련된 연구가 꾸준히 진행되고 있다. 본 논문에서는 기존 순환신경망 모델에 Neural Attention을 추가하여 주제 정보를 어느 정도 포함시킬지 결정한 뒤 다음 문장을 생성할 때 사용하는 모델을 제안한다. 이는 기존 문장과 다음 문장의 확률 정보를 사용할 뿐만 아니라 주제 정보를 추가하여 문맥적인 의미를 넣을 수 있기 때문에, 더욱 연관성 있는 문장을 생성할 수 있게 도와준다. 이 모델은 적절한 다음 문장을 생성할 뿐만 아니라 추가적으로 어떤 단어가 다음 문장을 생성함에 있어 주제문장에 더 민감하게 반응하는지 확인할 수 있다.

  • PDF

A Study on the Development of Subject-Divisional Plan Model for the Efficient Reference Service of University Library (대학도서관의 효율적인 정보서비스를 위한 주제화모형 개발에 관한 연구)

  • Chung, Jae-Young
    • Journal of the Korean Society for information Management
    • /
    • v.22 no.3 s.57
    • /
    • pp.327-350
    • /
    • 2005
  • Second, the necessity of adopting subject divisional plan is to secure enough subject librarians and large space These necessities must be fulfilled prior to adopting the subject divisional plan. Third subject divisional plan model for efficient reference service of university library is 'wide-area subject divisional plan model'. 1) In the case of central library, the space model of wide-area subject divisional plan is programmed as undergraduate library for the undergraduate students. And each subject libraries is operated as research library for the professors and graduate students. 2) In central library, the collection model of wide-area subject divisional plan is practiced as offering reference and general education centered data for undergraduate students 'study. And each subject libraries is furnished with research papers, recent journals, and various major-related data. 3) The human resource model of wide-area subject divisional plan is applicated by arranging appropriate librarians at the right place. In the case of central library, the reference librarians and librarians who educate the users and take charge of function are set in to help undergraduate students with their study. Subject library needs to secure subject librarians, librarians who take charge of function, and graduate students who are related to the subject as student assistant. Then it is possible to discriminate reference service by subjects and users.