• Title/Summary/Keyword: 주정폐수

Search Result 26, Processing Time 0.025 seconds

A Study on the Inhibition of Anaerobic Digestion for Alcohol Distillery Wastes (주정폐수 혐기성 소화의 저해작용에 관한 연구)

  • Chang, In-Soung;Kim, Jae-Shin;Lee, Chung-Hak;Park, Kap-Song
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.576-582
    • /
    • 1993
  • In order to investigate the inhibition of anaerobic digestion with alcohol-distillery wastes, batch anaerobic digestion experiments were conducted. Both naked-barley based and rice based alcohol-distillery wastes were separated into soluble organic fractions and suspended solids fraction using diafiltration with ceramic membranes. Each fraction of retentates and permeates, and the raw alcohol-distillery wastes were used as feeds for the anaerobic digestion study. The suspended solids fraction from the naked-barley stillages had produced much more propionic acid than the soluble organic fractions or raw alcohol-distillery wastes. The inhibition of anaerobic digestion for naked-barley alcohol-distillery wastes may be due to the higher productions of propionic acid with solids fraction of the wastes.

  • PDF

Elimination and Utilization of Pollutants - Part I Microbiological Clarification of Industrial Waste and Its Utilization as Feed Resources - (환경오염원(環境汚染源)의 제거(除去)와 그 이용성(利用性)에 관(關)한 연구(硏究) - 제(報I)1보(第). 미생물(微生物)에 의(依)한 산업폐수(産業廢水)의 정화(淨化) 및 사료자원개발(飼料資源開發)에 개(開)하여 -)

  • Lee, Ke-Ho;Lee, Kang-Heup;Park, Sung-O
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 1980
  • Industrial wastes from pulp and food plants were treated with microorganisms to clarify organic waste-water and to produce cells as animal feed, and results were summarized as follows. (1) Waste-water from pulp, beer, bread yeast, and ethanol distillation plants contained $1.4{\sim}1.5%$ of total sugar, $0.25{\sim}0.35%$ nitrogen, and biological oxygen demand (BOD) was $400{\sim}25,000$, chemical oxygen demand (COD), $500{\sim}28,000$, and pH, $3.8{\sim}7.0$. The BOD and COD were highest in waste-water from ethanol distillation plants among others. (2) Bacterial and yeast counts were $4{\times}10^4-1{\times}10^9,\;2{\times}10^2-7{\times}10^4/ml$ in waste-water. (3) Bacteria grew better in pulp waste and yeasts in beer, bread yeast, and ethanol distillation waste. (4) Saccharomyces cerevisiae SAFM 1008 and Candida curvata SAFM 70 were the most suitable microorganisms for clarification of ethanol distillation waste. (5) When liquid and solid waste from ethanol distillation were treated with microbial cellulase, xylanase, and pectinase, solid waste was reduced by 36%, soluble waste was increased, and recuding sugar content was increased by 1.3 times which provided better medium than untreated waste for cultivation of yeasts. (6) Optimum growth conditions of the two species of yeast in ethanol distillation waste were pH 5.0, $30^{\circ}C$, and addition of 0.2% of urea, 0.1% of $KH_2PO_4$ and 0.02% of $MgSO_4$. (7) Minimum number of yeast for proper propagation was $1.8{\times}10^5/ml$. (8) C. curvata70 was better than cerevisae for the production of yeast cells from ethanol distillation waste treated with microbial enzymes. (9) S. cerevisiae produced 16 g of dried cell per 1,000ml of ethanol distillation waste and reduced BOD by 46%. C. curvata produced 17.6g of dried cell and reduced BOD by 52% at the same condition. (10) Yeast cells produced from the ethanol distillation waste contained 46-52% protein indicating suitability as a protein source for animal feed.

  • PDF

The Treatment of Concentrated Organic Alcoholic Distillery Wastewater by the Fluidized-Bed Biofilm Reactor (생물막 유동층 반응기에 의한 주정공장의 고농도 유기성 폐수처리)

  • 김동석;장희재
    • KSBB Journal
    • /
    • v.6 no.4
    • /
    • pp.345-350
    • /
    • 1991
  • The purpose of this study is to investigate biomass characteristics and organic removal efficiency by changing superficial upflow velocity and organic loading rate in treating alcoholic distillery wastewater. Since the biomass concentration and the thickness of biofilm are very sensitive to superficial upflow velocity, a high concentration of biomass could be achieved by decreasing superficial upflow velocity that lowered the organic removal efficiency. Therefore, superficial upflow velocity should be controlled as to give optimum conditions and removal efficiency. Generally, activated sludge system shows 70% COD removal efficiency at$1.5kgCOD/m^3{\cdot}day$, but the fluidized-bed biofllm reactor shows 80% COD removal efficiency even at 6kgCOD/$m^2{\cdot}day$.

  • PDF

Increase of the Treatment Efficiency of a Pharmaceutical Wastewater and a Paperboard Wastewater by the addition of Bacteria (세균첨가에 의한 제약폐수 및 판지폐수의 처리효율의 향상)

  • 이형춘
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.370-374
    • /
    • 2000
  • Some bacterial strains isolated from activated sludges and media and type cultures were cultivated in a pharmaceutical wastewater and a paperboard wastewater and added during batch treatment of those wastewaters in order for these strains to increase the treatment efficiency. Bacillus sp(PC-3) isolated from the charcoal media of the pharmaceutical wastewater plant grew remarkably over there strains in that wastewater and the viable cell count after 24hr cultivation was $1.1{\times}10^6m/L$. Bacillus subtills KCTC 1028 a type strain grew best in the paperboard wastewater and the viable cell count after 24hr cultivation was $1.1{\times}10^7m/L$. Addition of PC-3 in a batch treatment of the pharmaceutical wastewater increased COD removal by 18% after 8 day. And addition of Bacillus subtills KCTC 1028 in a batch treatment of the paperboard wastewater increased COD removal by 14% only after 24hy Bacillus subtills DCTC 1028 was though to be able to be produced economically using alcohol distillery wastewaters from starch material.

  • PDF

Performance of Upflow Anaerobic Bioelectrochemical Reactor Compared to the Sludge Blanket Reactor for Acidic Distillery Wastewater Treatment (상향류식 혐기성 슬러지 블랭킷 반응조에 비교한 생물전기화학 반응조의 산성 주정폐수처리성능)

  • Feng, Qing;Song, Young-Chae;Yoo, Kyuseon;Lal, Banwari;Kuppanan, Nanthakumar;Subudhi, Sanjukta
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.279-290
    • /
    • 2016
  • The performance of upflow anaerobic bioelectrochemical reactor (UABE), equipped with electrodes (anode and cathode) inside the upflow anaerobic reactor, was compared to that of upflow anaerobic sludge blanket (UASB) reactor for the treatment of acidic distillery wastewater. The UASB was stable in pH, alkalinity and VFAs until the organic loading rate (OLR) of 4.0 g COD/L.d, but it became unstable over 4.0 g COD/L.d. As a response to the abrupt doubling in OLR, the perturbation in the state variables for the UABE was smaller, compared to the UASB, and quickly recovered. The UABE stability was better than the UASB at higher OLR of 4.0-8.0 g COD/L.d, and the UABE showed better performance in specific methane production rate (2,076mL $CH_4/L.d$), methane content in biogas (66.8%), and COD removal efficiency (82.3%) at 8.0 g COD/L.d than the UASB. The maximum methane yield in UABE was about 407mL/g $COD_r$ at 4.0 g COD/L.d, which was considerably higher than about $282mL/g\;COD_r$ in UASB. The rate limiting step for the bioelectrochemical reaction in UABE was the oxidation of organic matter on the anode surface, and the electrode reactions were considerably affected by the pH at 8.0 g COD/L.d of high OLR. The maximum energy efficiency of UABE was 99.5%, at 4.0 g COD/L.d of OLR. The UABE can be an advanced high rate anaerobic process for the treatment of acidic distillery wastewater.