• Title/Summary/Keyword: 주식매매

Search Result 71, Processing Time 0.023 seconds

Expiration-Day Effects: The Korean Evidence (주가지수 선물과 옵션의 만기일이 주식시장에 미치는 영향: 개별 종목 분석을 중심으로)

  • Choe, Hyuk;Eom, Yun-Sung
    • The Korean Journal of Financial Management
    • /
    • v.24 no.2
    • /
    • pp.41-79
    • /
    • 2007
  • This study examines the expiration-day effects of stock index futures and options in the Korean stock market. The so-called 'expiration-day effects', which are the abnormal stock price movements on derivatives expiration days, arise mainly from cash settlement. Index arbitragers have to bear the risk of their positions unless they liquidate their index stocks on the expiration day. If many arbitragers execute large buy or sell orders on the expiration day, abnormal trading volumes are likely to be observed. If a lot of arbitragers unwind positions in the same direction, temporary trading imbalances induce abnormal stock market volatility. By contrast, if some information arrives at market, the abnormal trading activity must be considered a normal process of price discovery. Stoll and Whaley(1987) investigated the aggregate price and volume effects of the S&P 500 index on the expiration day. In a related study, Stoll and Whaley(1990) found a similarity between the price behavior of stocks that are subject to program trading and of the stocks that are not. Thus far, there have been few studies about the expiration-day effects in the Korean stock market. While previous Korean studies use the KOSPI 200 index data, we analyze the price and trading volume behavior of individual stocks as well as the index. Analyzing individual stocks is important for two reasons. First, stock index is a market average. Consequently, it cannot reflect the behavior of many individual stocks. For example, if the expiration-day effects are mainly related to a specific group, it cannot be said that the expiration of derivatives itself destabilizes the stock market. Analyzing individual stocks enables us to investigate the scope of the expiration-day effects. Second, we can find the relationship between the firm characteristics and the expiration-day effects. For example, if the expiration-day effects exist in large stocks not belonging to the KOSPI 200 index, program trading may not be related to the expiration-day effects. The examination of individual stocks has led us to the cause of the expiration-day effects. Using the intraday data during the period May 3, 1996 through December 30, 2003, we first examine the price and volume effects of the KOSPI 200 and NON-KOSPI 200 index following the Stoll and Whaley(1987) methodology. We calculate the NON-KOSPI 200 index by using the returns and market capitalization of the KOSPI and KOSPI 200 index. In individual stocks, we divide KOSPI 200 stocks by size into three groups and match NON-KOSPI 200 stocks with KOSPI 200 stocks having the closest firm characteristics. We compare KOSPI 200 stocks with NON-KOSPI 200 stocks. To test whether the expiration-day effects are related to order imbalances or new information, we check price reversals on the next day. Finally, we perform a cross-sectional regression analysis to elaborate on the impact of the firm characteristics on price reversals. The main results seem to support the expiration-day effects, especially on stock index futures expiration days. The price behavior of stocks that are subject to program trading is shown to have price effects, abnormal return volatility, and large volumes during the last half hour of trading on the expiration day. Return reversals are also found in the KOSPI 200 index and stocks. However, there is no evidence of abnormal trading volume, or price reversals in the NON-KOSPI 200 index and stocks. The expiration-day effects are proportional to the size of stocks and the nearness to the settlement time. Since program trading is often said to be concentrated in high capitalization stocks, these results imply that the expiration-day effects seem to be associated with program trading and the settlement price determination procedure. In summary, the expiration-day effects in the Korean stock market do not exist in all stocks, but in large capitalization stocks belonging to the KOSPI 200 index. Additionally, the expiration-day effects in the Korean stock market are generally due, not to information, but to trading imbalances.

  • PDF

A Synthetic Model for Managing Market Risk of Financial Institutions (금융기관의 이자율, 환율, 주식수익률 변동위험에 대한 종합적 관리기법)

  • Kim, Tae-Hyuk
    • The Korean Journal of Financial Management
    • /
    • v.18 no.1
    • /
    • pp.107-128
    • /
    • 2001
  • 금융기관이 직면하는 시장위험관리와 관련된 연구는 이자율과 주식가격 변동위험, 또는 환율과 이자율 변동위험만을 고려한 자산배분모델이므로 그 모형의 정교성에도 불구하고 국제금융기관의 시장위험관리 모형으로 이용하기에는 부족한 점이 있다. 시장위험인 VAR를 측정하는 방법 중 포트폴리오 VAR 측정방법인 델타-노말 방법을 응용하여 금융기관이 시장위험을 종합적으로 관리하는 한편, 기대수익을 최대화시키는 자산-부채의 최적배분에 대한 모형을 유도할 수 있다. 본 논문은 포트폴리오 접근법을 이용하여 금융기관의 시장위험을 종합적으로 관리할 수 있는 모형을 개발하는 동시에 미국, 일본, 영국, 독일의 주요 금융자산의 가격변동자료를 바탕으로 실증적 분석을 시도하였다. 이론적 모형과 관련하여 국제금융기관이 시장위험을 통제하는 한편 목표수익을 달성하는데 필요한 $m_1$ 종류의 국내자산과 부채의 규모, $m_2$ 종류의 외화자산과 부채의 규모를 동시적으로 결정할 수 있는 모델을 개발하였다. 이 모형은 금융기관의 위험포지션과 목표수익이 변동함에 따라 재구성되어야 할 국내외 자산과 부채의 포트폴리오에 대한 종류와 규모를 구체적으로 파악할 수 있게 한다. 실증분석을 위해 미국에 본점을 두고 미국, 일본, 영국, 독일에서 영업활동을 하는 국제금융기관이 16개의 국내외 금융자산을 이용 가능한 것으로 가정하였다. 1995년 1월부터 1999년 6월까지 이들 금융자산의 월별자료와 각 국 통화의 대 U.S. 달러 환율을 이용하여 목표이익 10,000천 달러를 실현하는 한편 이자율과 환율 위험을 최소화시키는 자산, 부채의 적정구성에 관한 결과를 제시하였다.구의 성과로는 특정 투자자 집단이 주가의 움직임에 따라 매매를 하는 수동적 전략의 의미보다는 적극적으로 주가를 움직이는 주체로서 외국인투자자와 일부 기관투자자의 존재를 확인할 수 있었다는 점이며, 주가 움직임에 따른 개인투자자와 일부 기관 투자자의 수동적 매매 스타일과 기관투자자 사이의 투자스타일의 이질성을 통계적으로 확인할 수 있었다는 데에 있다.남아 각국과 우리나라간에는 주가변동에 시차가 없는 것으로 나타났다. 그러나 각국간 표준시차 및 거래소 거래시간을 고려하면 미국, 영국, 독일의 경우에도 그 시차는 1일이내이거나 거의 시차가 없는 것으로 판단된다. 발견되어 선물의 선도효과가 지배적임을 발견하였다.적 일정하게 하는 소비행동을 목표로 삼고 소비와 투자에 대한 의사결정을 내리고 있음이 실증분석을 통하여 밝혀졌다. 투자자들은 무위험 자산과 위험성 자산을 동시에 고려하여 포트폴리오를 구성하는 투자활동을 행동에 옮기고 있다.서, Loser포트폴리오를 매수보유하는 반전거래전략이 Winner포트폴리오를 매수보유하는 계속거래전략보다 적합한 전략임을 알 수 있었다. 다섯째, Loser포트폴리오와 Winner포트폴리오를 각각 투자대상종목으로써 매수보유한 반전거래전략과 계속거래 전략에 대한 유용성을 비교검증한 Loser포트폴리오와 Winner포트폴리오 각각의 1개월 평균초과수익률에 의하면, 반전거래전략의 Loser포트폴리오가 계속거래전략의 Winner포트폴리오보다 약 5배정도의 높은 1개월 평균초과수익률을 실현하였고, 반전거래전략의 유용성을 충분히 발휘하기 위하여 장단기의 투자기간을 설정할 경우에 6개월에서 36개월로 이동함에 따라 6개월부터 24개월까지는 초과수익률이 상승하지만,

  • PDF

Regulation Changes to Boost KONEX: Effects and Implications (코넥스(KONEX: Korea New Exchange) 시장 활성화 조치: 효과 및 시사점)

  • Kim, Meong Ae;Woo, Min Cheol
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.12 no.3
    • /
    • pp.191-202
    • /
    • 2017
  • KONEX (Korea New Exchange) is the organised stock exchange for small enterprises. It is a channel through which venture start-ups at their early stage can raise funds without a huge burden of debt. We explain the regulations in this market and examine the effects of major changes in the relevant regulations. The first change was replacing the call auction mechanism with the continuous auction mechanism. The change improved the information asymmetry among investors. The second was lowering the minimum deposit requirement for individual investors from 300 million won to 100 million won. As the result of the change, market liquidity increased a lot and the number of investors increased. The last change was introducing the small investment account. Although this raised the participation of individual investors but did not lead to the improvement in market liquidity or information asymmetry. In overall, encouraging more investors to participate in the transactions in KONEX is the fast way to boost the market, while the long-term strategy should focus more on improving the information asymmetry by helping information generating and transferring activities.

  • PDF

A Study on The Effect Financial Performance of Convergence Factors on Corporate (기업의 융합요인이 재무적 성과에 미치는 영향)

  • Choi, Seung-Il;Song, Seong-Bin
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.123-131
    • /
    • 2015
  • Modern is the era of convergence. In the complex position of the company to survive in the rapid environmental changes it can not be a mandatory fusion rather than choice. Wind convergence also in the art can be said to castration. This phenomenon can be found in many real life. Most real-life contact with the service sector is no exception. Due to a number of banks and insurance combined Banca named fusion of French banking and insurance business are integrated. Even recently, the situation has been provided by Investment consulting, equity trading services within bank branches. In this study, based on the need for convergence of corporate businesses convergence factors examined through regression analysis on whether any impact on the financial aptitude. External environmental factors that make up the fusion research factors internal environmental factors, both core competencies were factors to affect financial performance.

A study on stock price prediction through analysis of sales growth performance and macro-indicators using artificial intelligence (인공지능을 이용하여 매출성장성과 거시지표 분석을 통한 주가 예측 연구)

  • Hong, Sunghyuck
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2021
  • Since the stock price is a measure of the future value of the company, when analyzing the stock price, the company's growth potential, such as sales and profits, is considered and invested in stocks. In order to set the criteria for selecting stocks, institutional investors look at current industry trends and macroeconomic indicators, first select relevant fields that can grow, then select related companies, analyze them, set a target price, then buy, and sell when the target price is reached. Stock trading is carried out in the same way. However, general individual investors do not have any knowledge of investment, and invest in items recommended by experts or acquaintances without analysis of financial statements or growth potential of the company, which is lower in terms of return than institutional investors and foreign investors. Therefore, in this study, we propose a research method to select undervalued stocks by analyzing ROE, an indicator that considers the growth potential of a company, such as sales and profits, and predict the stock price flow of the selected stock through deep learning algorithms. This study is conducted to help with investment.

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

Using cluster analysis and genetic algorithm to develop portfolio investment strategy based on investor information (군집분석과 유전자 알고리즘을 활용한 투자자 거래정보 기반 포트폴리오 투자전략)

  • Cheong, Donghyun;Oh, Kyong Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.107-117
    • /
    • 2014
  • The main purpose of this study is to propose a portfolio investment strategy based on investor types information. For improvement of investment performance, artificial intelligence techniques are used to construct a portfolio. Among many artificial intelligence techniques, cluster analysis is applied to select securities and genetic algorithm is applied to assign the respective weight within the portfolio. Empirical experiments in the Korean stock market show that proposed portfolio investment strategy is practicable and superior strategy. This result implies that analysis of investor's trading behavior may assist investors to make an investment decision and to get superior performance.

호가(呼價)스프레드(spreads)와 주가반전(株價反轉)에 관한 실증연구

  • Kim, Yeong-Gyu;Kim, Heung-Yeol
    • The Korean Journal of Financial Studies
    • /
    • v.5 no.1
    • /
    • pp.105-133
    • /
    • 1999
  • 주가(株價)의 예측(豫測)이 가능하다는 최근 실증결과들로 말미암아 증권시장의 효율성(效率性)에 강한 의문이 제기되고 있다. 주가(株價)의 반전(反轉)(price reversal)이 주가의 예측을 가능하게 한다는 것이다. 혹자는 증권시장이 정보에 과잉반응(過剩反應)을 나타내고 그 후 이를 수정함으로서 주가의 반전이 나타난다고 주장한다. 또 혹자는 호가(呼價)스프레드(spreads)의 존재로 인하여 주가의 반전이 있을 수 있다고 한다. 실제로, 때로는 매수호가에 때로는 매도호가에 거래가 이루어지고 있기 때문이다. 본 연구는 KOSPI 200 구성주식의 일별(日別)수익률 자료를 이용한 실증분석에서 다음과 같은 중요한 사항들을 발견하였다. 첫째, 한국증권시장에 주가반전(株價反轉)이 있다는 것을 확인하였으며, 이러한 단기 주가반전의 주된 원천은 시장(市場)의 과잉반응(過剩反應)이 아니라 호가(呼價)스프레드라는 것을 발견하였다. 일중(日中)에도 물론 주가가 반전하고 있음을 확인하였다. 둘째, 호가스프레드에 의한 변동성으로 말미암아 거래가격을 기준으로 한 일별수익률의 변동성(變動性)이 상당히 과대(過大) 추정(推定)될 수 있음을 발견하였다. 일별수익률 분산의 약 15%는 호가스프레드로 설명(說明)할 수 있었다. 마지막으로, 본 연구결과는 다음과 같은 점을 시사(示峻)하고 있다. 우리 나라에서 호가스프레드는 딜러마켓에서와 같은 '마진'의 의미가 전혀 없다. 따라서 호가스프레드의 크기를 결정하는데 있어 중요한 역할을 하는 '호가단위(呼價單位)'를 적절한 수준으로 가능한한 작게 하는 것이 바람직 할 것이다. 이는 매도자와 매수자의 의견접근을 용이하게 함으로서 매매(賣買)의 성립(成立)을 촉진할 뿐만 아니라, 특히 기관투자자의 거래비용(去來費用)을 줄일 수 있으며, 또 호가스프레드로 인한 앞서의 불필요한 변동성(變動性)을 줄이는 효과도 아울러 기할 수 있을 것이다.

  • PDF

The Study of Pressure Measurement by Difference of ANFIS prediction on individual Option. (ANFIS 예측값을 활용한 개별 옵션 압력 측정 방법에 대한 연구)

  • Ko, Young-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.436-438
    • /
    • 2017
  • 자본주의의 꽃인 주식시장은 파생시장에 의해 영향을 받고 있으며, 파생시장은 지수옵션 상품에 의해 영향을 받고 있다. 최근 들어 시스템 트레이딩에 대한 관심이 점점 더해가고 있으며 투자자에게 컴퓨터 시스템과 매매 전략에 대한 이해를 요구하고 있다. 지수옵션 시장은 만기일을 기준으로 마치 파도와 같이 순간순간 살아 움직이고 있다. 옵션에 대한 효과적인 관점은 투자자에게 확률 높은 매력적인 전략을 제공하며 옵션의 움직임을 전체적으로 해석할 수 있게 한다, 그리고 궁극적으로 옵션가의 예측을 가능하게 한다. 행사가와 방향성에 의한 개별 옵션은 함수로 해석될 수 있다. 다양한 입력값에 의해 가격이라는 하나의 출력값이 결정되는 구조이다. 입력값에는 지수, 시간, 거래량 의 세가지 카테고리로 이루어진다. 이중 거래량은 예측이 가능한데, 개별 옵션이 아닌 앙상불의 경우 출력값으로 처리될 수 있다. 하지만 앙상불 옵션에서 개별 옵션가는 경직성을 가지게 되어 예상가의 차이에 의한 압력이 발생하게 된다. 이 압력은 이후의 지수변화에 핵심적인 에너지로 작용할 수 있다. 압력의 측정은 다양한 방법이 있을 수 있는데, 본 논문에서는 뉴로-퍼지 시스템을 이용한 예측값과의 차이를 측정하여 계산하였다. 일단 학습된 뉴로-퍼지 시스템은 가격을 예측하게 되며, 실제 가격과의 괴리는 압력으로 해석할 수 있다.