Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.545-546
/
2021
최근 주식시장의 관심이 급격하게 높아지고 있으며, 코로나 19의 영향으로 신규 투자가 더욱더 늘어나고 있다. 하지만 개인의 투자자의 경우 기관보다 취득할 수 있는 정보의 양이 제한적이고 정보의 취득 시점이 늦기 때문에 개인의 투자자는 정보를 주관적으로 판단할 수밖에 없는 문제점이 있다. 따라서 본 논문에서는 주식매매의 객관적인 판단을 위하여 페어 트레이딩 기반 빅데이터 분석을 이용하여 주식 매매 시기를 사용자에게 알려주는 알림 시스템을 제안한다. 주식 매매 시기 알림 시스템을 적용할 때 사용자에게 객관적인 주식 매매 시기를 알려주어 투자 손해를 줄일 수 있을 것으로 기대한다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.7-10
/
2022
본 연구는 국내 주식의 intraday 가격변화를 딥러닝 모형들로 예측하고 그 예측모형을 이용한 매매전략 딥러닝 모형을 제안한다. 주식의 intraday 가격변화에 따라서, 고빈도 매매, 주문집행문제 (order execution problem), 자동화 매매 등과 같은 intraday 주식 트레이딩의 수익률이 달라지기 때문에, 주식의 intraday 가격변화 예측은 주식 투자에 있어서 중요하다. 해외 시장에 대해서는 인공지능 등을 이용한 intraday 가격변화 예측 연구가 활발히 이루어졌지만, 국내의 경우 관련한 연구가 드물어 그 효용성이 명확히 드러나지 않았었다. 그에 따라서, KOSPI 50의 구성 종목에 대하여 정준의(canonical) 딥러닝 모형들을 적용하여 예측 성능을 비교한다. 또한, 그 예측모형들을 활용하여 간소화된 주문집행문제에서의 매매전략 딥러닝 모형을 제안한다. 그리고, 제안한 매매전략 딥러닝 모형을 KOSPI 50의 구성 종목에 대하여 실험하여, 제안한 방법론이 유효함을 밝힌다. 제시된 모형을 실제 주식 매매에 직접 적용하여 수익성을 개선을 기대할 수 있고, 사람이 직접 거래할지라도 효과적인 보조 지표가 될 수 있기에 본 논문은 실용적 의미를 지닌다.
Proceedings of the Korean Statistical Society Conference
/
2005.05a
/
pp.277-283
/
2005
In general, stock prices do not follow normal distributions and mean trend indexes, volatility indexes, and volume indicators relating to these non-normal stock price are widely used as buy-sell strategies. These general buy-sell strategies are rather intuitive than statistical reasoning. The non-normality problem can be solved by normalizing process and statistical buy-sell strategy can be obtained by using mean trend and volatility indexes together with normalized stock prices. In this paper, buy-sell strategy based on mean trend and volatility index with normalized stock prices are proposed and applied to KOSPI200 data to see the feasibility of the proposed buy-sell strategy.
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.161-162
/
2021
주식을 매매할 때, 주식의 차트와 가치를 분석한 다음 언제 주식이 상한가 또는 하한가가 될지 예측한 후 매매하게 된다. 하지만 일반적으로 주식을 예측하기 어려워 주식의 수익을 내기 힘들다. 따라서 본 논문은 지난날의 주식 가격 데이터를 분석해 주식의 가격을 예측하는 주식 차트 분석을 할 수 있게 '주가 예측을 위한 웹 사이트'를 개발하였다. 이 사이트는 주식의 차트 분석을 지원하고 주식을 언제 매매할지에 대한 의사결정을 도와줄 수 있을 것으로 기대된다.
본 연구는 프로그램매매가 주가지수 선물시장 및 현물 주식시장의 수익률 변동성에 미치는 효과에 대해서 일중 수익률 및 프로그램매매자료를 이용하여 분석을 시도하였다. 실증분석을 통해서 관찰된 결과를 살펴보면 대부분 선진국 시장에서 보고된 결과와 일치하였다. 우선 프로그램매매가 증가할수록 현물 주식시장에서의 변동성은 증대하는 것으로 나타났으나 선물시장에서는 그러한 일관성 있는 관계를 발견하지 못하였다. 프로그램매매 발동 직후 선물 및 현물시장의 수익률은 반전현상을 나타냈으며 특히 현물시장의 가격변화가 선물시장에 비해서 큰 것으로 관찰되었다. 그러나 이러한 선물시장과 현물시장에 있어서의 가격반전 현상이 시장 유동성에 미치는 경제적 영향은 선물만기일과 같이 특정시간대에 프로그램매매가 집중되지 않는 한 경미한 것으로 판단되었다. 프로그램매매 특히 차익거래는 선물 가격과 현물 가격간의 균형 관계가 일시적인 수급상황에 따라 이발될 경우 이를 다시 균형 상태로 회복시켜 줌으로써 시장의 효율성을 증대시키는 주요한 연결통로로서의 역할을 수행한다. 특히 두 시장간의 균형 상태는 선물 시장보다는 현물 주식시장에서의 활발한 매매 활동을 통하여 이루어짐을 알 수 있었다. 결론적으로 국내시장에서 차익거래는 시장의 위험을 증대시키는 부정적인 측면보다는 시장의 효율성을 증진시키는 긍정적인 순기능이 많은 것으로 관찰되었다.
It is difficult to develop Electronic Commerce System due to expansion, maintenance and repair of the system. In this paper, the author proposes 3-Tier structure Stock Market Management System using JAVA and CORBA. The event service of CORBA supports the interactive environment. For improvement of expansion, performance, security, maintenance, repair. and efficiency, the 3-Tier structure Stock Market Management System is implemented using CORBA and JDBC middle ware in this environment.
주식 시장을 예측하는 문제는 금융 분야에서 중요한 관심이 되어왔다. 주식 시세는 시장 환경의 변화에 따라 급격한 변화를 갖는다. 따라서 주식 투자로부터 이윤을 창출하기 위해서 주식을 사고 파는 시점을 결정하는 문제는 중요하다. 본 연구에서는 주시 매매 타이밍을 예측하기 위해서 캔들스틱 차트(Candlesticks chart)분석을 이용한 전문가 시스템(Expert System)으로서 '차트 해석기 (Chart Interpreter)'를 설계, 개발하였다. 주식 가격의 변동을 예고하는 패턴들을 정의하고 그 패턴들의 의미에 따라 매미결정을 첨가한 규칙을 생성하였다. 정의된 패턴들은 의미에 따라 크게 하락형, 상승형, 중립형, 추세지속형, 추세 전환형으로 분류된다. 정의된 패턴과 지식베이스의 유용성을 검증하기 위해서 수행된 1992년부터 1997년에 걸친 과거 한국 주식 시장 실거래 투자 데이터에 대한 실험결과는 평균 투자 성공률이 약 72%로서 주식시장에서 투자자들의 투자를 돕는데 우수한 지표로서 사용될 수 있음을 보였다. 또한, 개발된 지식베이스는 특정 연도나 특정 분야에 따라 예측력이 크게 변하지 않은 시간 독립적이고 분야 독립적인 특성을 가짐으로 분야나 시간에 구애받지 않고 사용할 수 있다는 장점을 갖는다.
This paper presents a reinforcement learning framework for stock trading systems. Trading system parameters are optimized by Q-learning algorithm and neural networks are adopted for value approximation. In this framework, cooperative multiple agents are used to efficiently integrate global trend prediction and local trading strategy for obtaining better trading performance. Agents Communicate With Others Sharing training episodes and learned policies, while keeping the overall scheme of conventional Q-learning. Experimental results on KOSPI 200 show that a trading system based on the proposed framework outperforms the market average and makes appreciable profits. Furthermore, in view of risk management, the system is superior to a system trained by supervised learning.
Recent development of electronic commerce enables the use of Electronic Stock Trading Systems(ESTS) to be expanded. In ESTS, information with various sensitivity levels is shared by multiple users with mutually different clearance levels. Therefore, it is necessary to use Multilevel Secure Database Management Systems(MLS/DBMSs) in controlling concurrent execution among multiple transactions. In ESTS, not only analytical OLAP transactions, but also mission critical OLTP transactions are executed concurrently, which causes it difficult to adapt traditional secure transaction management schemes to ESTS environments. In this paper, we propose Secure One Snapshot(SOS) protocol that is devised for Secure Transaction Management in ESTS. By maintaining additional one snapshot as well as working database SOS blocks covert-channel efficiently, enables various real-time transaction management schemes to be adapted with ease, and reduces the length of waiting queue being managed to maintain freshness of data by utilizing the characteristics of less strict correctness criteria. In this paper, we introduce the process of SOS protocol with some examples, and then analyze correctness of devised protocol.
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.1017-1019
/
2014
자본주의의 꽃이라 할 수 있는 주식시장은 기업의 정량화된 가치를 매매하는 곳이다. 또한 파생거래는 주식시장의 위험회피 목적으로 만들어졌다. 파생시장이 투기적인 목적으로 악용되기도 하지만 기관투자가에게는 헤지거래의 중요한 수단임은 명백한 사실이다. 파생거래에서 옵션 거래는 투기적인 성향의 개인 거래자와 시장을 선도하는 기관 거래자 간의 치열한 대결로 볼 수 있다. 옵션은 상품별로 시시각각 변하는 이론가와 실거래가가 존재한다. 이론가를 기준으로 한 이격도 매매는 레버리지가 큰 옵션 거래에서 효과적인 위험회피 방법이다. 하지만 이론가는 현실적인 시장가와 괴리가 있을 수밖에 없다. 보다 현실적인 평균값을 구하기 위해서는 실제 옵션가의 통계만이 확실한 방법이다. 이를 위해서 옵션 만기일에 상품별로 차트정보를 수집하여 데이터베이스화하면 효과적이다. 이는 매우 반복적인 작업으로 이를 효과적으로 수행할 수 있는 에 이전트를 개발하였다. 이를 이용하면 실거래가를 기본으로 하는 평균값을 추출할 수 있으며, 지수차이와 잔여일에 따른 옵션 평균값에 근거하여 이격도 매매에 활용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.