• Title/Summary/Keyword: 주시회피

Search Result 5, Processing Time 0.02 seconds

선박안전영역에 기반한 충돌회피 알고리즘에 관한 연구

  • Kim, Dong-Gyun;Jeong, Jung-Sik;Park, Gye-Gak
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.10-12
    • /
    • 2011
  • 과거 충돌회피를 위한 알고리즘은 충돌위험을 결정하는데 항해사 대신 위험도를 판단하여 충돌회피를 하려고 한다. 그러나 경우에 따라서 국제해상충돌예방규칙에 맞지 않게 충돌 회피를 시행한다. 또한 타선과의 피항 관계를 항해사가 주시하고 기억해야 하는 것은 항해사에게 부담을 줄 수 있다. 따라서 국제해상충돌예방규칙에 맞게 피항 관계를 정의하여 항해사에게 알려줌으로써 피항 행동을 결정하는데 시간 및 인적 실수를 줄여줄 것으로 기대한다.

  • PDF

A Study on the Features of Visual-Information Acquirement Shown at Searching of Spatial Information - With the Experiment of Observing the Space of Hall in Subway Station - (공간정보의 탐색과정에 나타난 시각정보획득특성에 관한 연구 - 지하철 홀 공간의 주시실험을 대상으로 -)

  • Kim, Jong-Ha
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.2
    • /
    • pp.90-98
    • /
    • 2014
  • This study has analyzed the meaning of observation time in the course of acquiring the information of subjects who observed the space of hall in subway stations to figure out the process of spatial information excluded and the features of intensive searching. The followings are the results from the analysis of searching process with the interpretation of the process for information acquirement through the interpretation of observation area and time. First, based on the general definition of observation time, the reason for analyzing the features of acquiring spatial information according to the subjects' observation time has been established. The feature of decreased analysis data reflected that of observation time in the process of perceiving and recognizing spatial information, which showed that the observation was focused on the enter of the space during the time spent in the process of observing the space and the spent time with considerable exclusion of bottom end (in particular, right bottom end). Second, while the subjects were observing the space of hall in subway stations, they focused on the top of the left center and the signs on the right exit the most, which was followed by the focus on the both side horizontally and the clock on the top. Third, the analysis of consecutive observation frequency enabled the comparison of the changes to the observation concentration by area. The difference of time by area produced the data with which the change to the contents of spatial searching in the process of searching space could be known. Fourth, as the observation frequency in the area of I changed [three times -> six times -> 9 times], the observation time included in the area increased, which showed the process for the change from perception to recognition of information with the concentration of attention through visual information. It makes it possible to understand that more time was spent on the information to be acquired with the exclusion of the unnecessary information around.

Trajectory Generation, Guidance, and Navigation for Terrain Following of Unmanned Combat Aerial Vehicles (무인전투기 근접 지형추종을 위한 궤적생성 및 유도 항법)

  • Oh, Gyeong-Taek;Seo, Joong-Bo;Kim, Hyoung-Seok;Kim, Youdan;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.979-987
    • /
    • 2012
  • This paper implements and integrates algorithms for terrain following of UCAVs (Unmanned Combat Aerial Vehicles): trajectory generation, guidance, and navigation. Terrain following is very important for UCAVs because they perform very dangerous missions such as Suppression of Enemy Air Defences while the terrain following can improve the survivability of UCAVs against from the air defence systems of the enemy. To deal with the GPS jamming, terrain referenced navigation based on nonlinear filter is chosen. For the trajectory generation, Voronoi diagram is adopted to generate horizontal plane path to avoid the air defense system. Cubic spline method is used to generate vertical plane path to prevent collisions with ground while flying sufficiently close to surface. Follow-the-Carrot and pure pursuit tracking methods, which are look-ahead point based guidance algorithms, are applied for the guidance. Numerical simulation is performed to verify the performance of the integrated terrain following algorithm.

A Experimental Study on the Effect of Increasing Rudder Force on Turning Ability of Short Sea Shipping Ship (타력 향상이 근해운송선박의 선회 성능에 미치는 영향에 관한 실험적 연구)

  • Jun, Hee-Chul;Kim, Sang-Hyun;Kim, Hyun-Jun;Park, Hwa-Pyeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.591-596
    • /
    • 2012
  • Recently, a vessel's maneuvering performance is considered to be an important subject to secure safety at short sea shipping. Especially the high turning performance, which is required to avoid the marine pollution by the ships that was grounded, becomes more severe. In this paper, we discuss the effect of increasing rudder force on turning performance of short sea shipping ship by free running test in towing tank. First of all, we make the 47K PC model ship and high-lift rudder using Coanda effect. And we make the free running test system for the turning test in towing tank. And also we perform the turing test of 47K PC model in several changes of Coanda jet momentum and evaluate the turing performance such as advance and tactical diameter. Finally, we confirm that the increasing of rudder force is very effective to improvement of turning performance of short sea shipping ship.

Intelligent Navigation Information Fusion Using Fuzzy Expert System (퍼지 전문가 시스템을 이용한 지능형 항행 정보 융합)

  • Kim, Do-Yeon;Yi, Mi-Ra
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.47-56
    • /
    • 2010
  • In navigation, officers receive data about inside and outside of ship from several devices(ex, GPS / AIS / ECDIS / ARPA Radar / etc) in bridge, and use it to recognize and predict safety situations. However, observation work of a officer is still hard for a torrent of data from several devices, and the problem of inconsistent data among the devices. In previous research, we presented the conceptual model of Intelligent Navigation Safety Information System based on information fusion, and showed the example of the conceptual model using CF (Certainty Factor) expert system to solve this problem. The information fusion technology needs various reasoning skills, and CF expert system is not enough to express ambiguous or indefinite factors. In this paper, we propose the concept of an intelligent navigation information fusion using fuzzy expert system to describe the ambiguous factors, and show the validity of applying fuzzy expert system to the Navigation Safety Information System through the design and implementation of the proposed concept.