• Title/Summary/Keyword: 주성분 회귀 모델

Search Result 43, Processing Time 0.029 seconds

A Study of Prediction on Company's Growth with R and Analysis Algoritnm (R과 분석 알고리즘을 활용한 기업의 성장성 예측에 관한 연구)

  • Kang, Hui-Seok;Kim, Kyung-Su;Ryu, Ji-Seung;Lee, Ga-Yeon;Lee, Min-Jung
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.428-431
    • /
    • 2017
  • 기업의 성장성과 기업 주식가치를 매출, 매출원가, 영업이익율 등의 정형데이터와 경제, 경영관련 뉴스 등 비정형 데이터를 토대로 다양한 알고리즘을 활용해 분석하고, 그 결과의 유의성을 검증한다. 주성분회귀분석, 인공신경망, 나이브 베이지안 분류자, 긍/부정 사전분석 모델을 통해 분석된 결과를 검토하여 각 분석모델 별 성능을 확인하고, 기업 성장성 예측을 위해 활용 가능한 모델과 필요한 데이터를 제시한다.

An intelligent sun tracker with self sensor diagonosis system (자기 센서진단기능을 가진 지능형 태양추적장치)

  • 최현석;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.452-456
    • /
    • 2002
  • The sensor based control system has some sensor fault while operating in the field. In this paper, a sensor fault detection and reconstruction system for a sun tracking controller has been researched by using polynomial regression and principle component analysis approach. The developed sun tracking system controls tow actuators with sensor based mechanism as on-line control and sun orbit information as off-line control, alternatively. To show the validity of the developed system, several experiments were illustrated.

  • PDF

A Study on Predictive Models based on the Machine Learning for Evaluating the Extent of Hazardous Zone of Explosive Gases (기계학습 기반의 가스폭발위험범위 예측모델에 관한 연구)

  • Jung, Yong Jae;Lee, Chang Jun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.248-256
    • /
    • 2020
  • In this study, predictive models based on machine learning for evaluating the extent of hazardous zone of explosive gases are developed. They are able to provide important guidelines for installing the explosion proof apparatus. 1,200 research data sets including 12 combustible gases and their extents of hazardous zone are generated to train predictive models. The extent of hazardous zone is set to an output variable and 12 variables affecting an output are set as input variables. Multiple linear regression, principal component regression, and artificial neural network are employed to train predictive models. Mean absolute percentage errors of multiple linear regression, principal component regression, and artificial neural network are 44.2%, 49.3%, and 5.7% and root mean square errors are 1.389m, 1.602m, and 0.203 m respectively. Therefore, it can be concluded that the artificial neural network shows the best performance. This model can be easily used to evaluate the extent of hazardous zone for explosive gases.

Reliability Analysis of VOC Data for Opinion Mining (오피니언 마이닝을 위한 VOC 데이타의 신뢰성 분석)

  • Kim, Dongwon;Yu, Song Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.217-245
    • /
    • 2016
  • The purpose of this study is to verify how 7 sentiment domains extracted through sentiment analysis from social media have an influence on business performance. It consists of three phases. In phase I, we constructed the sentiment lexicon after crawling 45,447 pieces of VOC (Voice of the Customer) on 26 auto companies from the car community and extracting the POS information and built a seven-sensitive domains. In phase II, in order to retain the reliability of experimental data, we examined auto-correlation analysis and PCA. In phase III, we investigated how 7 domains impact on the market share of three major (GM, FCA, and VOLKSWAGEN) auto companies by using linear regression analysis. The findings from the auto-correlation analysis proved auto-correlation and the sequence of the sentiments, and the results from PCA reported the 7 sentiments connected with positivity, negativity and neutrality. As a result of linear regression analysis on model 1, we indentified that the sentimental factors have a significant influence on the actual market share. In particular, not only posotive and negative sentiment domains, but neutral sentiment had significantly impacted on auto market share. As we apply the availability of data to the market, and take advantage of auto-correlation of the market-related information and the sentiment, the findings will be a huge contribution to other researches on sentiment analysis as well as actual business performances in various ways.

Renewable Energy Generation Prediction Model using Meteorological Big Data (기상 빅데이터를 활용한 신재생 에너지 발전량 예측 모형 연구)

  • Mi-Young Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2023
  • Renewable energy such as solar and wind power is a resource that is sensitive to weather conditions and environmental changes. Since the amount of power generated by a facility can vary depending on the installation location and structure, it is important to accurately predict the amount of power generation. Using meteorological data, a data preprocessing process based on principal component analysis was conducted to monitor the relationship between features that affect energy production prediction. In addition, in this study, the prediction was tested by reconstructing the dataset according to the sensitivity and applying it to the machine learning model. Using the proposed model, the performance of energy production prediction using random forest regression was confirmed by predicting energy production according to the meteorological environment for new and renewable energy, and comparing it with the actual production value at that time.

Simultaneous Determination of Tryptophan and Tyrosine by Spectrofluorimetry Using Multivariate Calibration Method (다변량 분석법을 이용한 Tryptophan과 Tyrosine의 형광분광법적 정량)

  • Lee, Sang-Hak;Park, Ju-Eun;Son, Beom-Mok
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.4
    • /
    • pp.309-317
    • /
    • 2002
  • A spectrofluorimetric method for the simultaneous determination of amino acids (tryptophan and tyrosine) based on the application of multivariate calibration method such as principal component regression and partial least squares (PLS) to luminescence measurements has been studied. Emission spectra of synthetic mixtures of two amino acids were obtained at excitation wavelength of 257 ㎚. The calibration model in PCR and PLS was obtained from the spectral data in the range of 280-500 ㎚ for each standard of a calibration set of 32 standards, each containing different amounts of two amino acids. The relative standard error of prediction ($RSEP_a$) was obtained to assess the model goodness in quantifying each analyte in a validation set. The overall relative standard error of prediction ($RSEP_m$) for the mixture obtained from the results of a validation set, formed by 6 independent mixtures was also used to validate the present method.

Development of Nondestructive Evaluation System for Internal Quality of Watermelon using Acoustic Wave (음파를 이용한 비파괴 수박 내부품질 판정 시스템 개발)

  • Choi, Dong-Soo;Lee, Young-Hee;Choi, Seung-Ryul;Kim, Gi-Young;Park, Jong-Min
    • Food Science and Preservation
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Watermelons (Citrulus vulgaris Schrad) are usually sorted manually by weight, appearance, and acoustic impulse, so grading of maturity and internal quality is subject to inaccuracies. It was necessary to develop a nondestructive evaluation technique of internal watermelon quality to reduce human error. Thus, acoustic characteristics related to internal quality factors were analyzed. Among these factors, three (ripeness, presence of an internal cavity, and blood-colored flesh) were selected for evaluation. The number of peaks and the sum of peak amplitudes for watermelons with blood-colored flesh were lower than for normal fruits. The portable evaluation system has an impact mechanism, a microphone sensor, a signal processing board, an LCD panel, and a battery. A performance test was conducted in the field. The internal quality evaluation model showed 87% prediction accuracy. Validation was conducted on 72 samples. The accuracy of quality evaluation was 83%. The quality of samples was evaluated by an inspector using conventional methods (hitting the watermelon and listening to the sounds), and then compared with prototype results. The quality evaluation accuracy of the prototype was better than that of the inspector. This nondestructive quality evaluation system could be useful in the field, warehouse, and supermarket

Context Aware Feature Selection Model for Salient Feature Detection from Mobile Video Devices (모바일 비디오기기 위에서의 중요한 객체탐색을 위한 문맥인식 특성벡터 선택 모델)

  • Lee, Jaeho;Shin, Hyunkyung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.117-124
    • /
    • 2014
  • Cluttered background is a major obstacle in developing salient object detection and tracking system for mobile device captured natural scene video frames. In this paper we propose a context aware feature vector selection model to provide an efficient noise filtering by machine learning based classifiers. Since the context awareness for feature selection is achieved by searching nearest neighborhoods, known as NP hard problem, we apply a fast approximation method with complexity analysis in details. Separability enhancement in feature vector space by adding the context aware feature subsets is studied rigorously using principal component analysis (PCA). Overall performance enhancement is quantified by the statistical measures in terms of the various machine learning models including MLP, SVM, Naïve Bayesian, CART. Summary of computational costs and performance enhancement is also presented.

Development of a Luxuriousness Model for Wall Paper Design based on Visual and Tactile Characteristics (벽지의 디자인 요소 및 감성적 특성에 의한 고급감 모델 개발)

  • Ban Sang-U;Lee Ju-Hwan;Kim In-Gi;Lee Cheol;Yun Myeong-Hwan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.193-197
    • /
    • 2006
  • 본 연구는 감성 공학적 접근법을 사용하여, 벽지의 디자인 요소와 소비자의 감성과의 관계를 정량적으로 규명하는 것을 목표로 한다. 문헌조사, 인터뷰 전문가 의견 등을 종합하여, 총 13개의 주관적 감성 변수(6개의 시각적 변수, 7개의 촉각적 변수) 와 4개의 벽지 디자인 요소(color, texture pattern, embossing depth, gloss)들이 추출되었으며, 최종 목표 감성은 '고급감'으로 정하였다. 9점 척도와 100점 척도으로 구성된 설문지를 통하여, 28개의 샘플 벽지에 대해서 30명의 목표 고객들을 대상으로 감성 평가 실험을 실시하였고, 주성분 회귀 분석, 수량화 이론 등을 이용한 분석을 통하여, 소비자의 감성과 디자인 요소와의 관계를 정량적으로 분석했으며, 고급감을 향상시킬 수 있는 감성 변수 조합과 디자인 요소 조합을 규명하였다.

  • PDF

Performance Comparison of Traffic-Dependent Displacement Estimation Model of Gwangan Bridge by Improvement Technique (개선 기법에 따른 광안대교의 교통량 의존 변위 추정 모델 성능 비교)

  • Kim, Soo-Yong;Shin, Sung-Woo;Park, Ji-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.120-130
    • /
    • 2019
  • In this study, based on the correlation between traffic volume data and vertical displacement data developed in previous research using the bridge maintenance big data of 2006, the vertical displacement estimation model using the traffic volume data of Gwangan Bridge for 10 years A comparison of the performance of the developed model with the current applicability is presented. The present applicability of the developed model is analyzed that the estimated displacement is similar to the actual displacement and that the displacement estimation performance of the model based on the structured regression analysis and the principal component analysis is not significantly different from each other. In conclusion, the vertical displacement estimation model using the traffic volume data developed by this study can be effectively used for the analysis of the behavior according to the traffic load of Gwangan Bridge.