• Title/Summary/Keyword: 주성분회귀

Search Result 159, Processing Time 0.032 seconds

Reliability Analysis of VOC Data for Opinion Mining (오피니언 마이닝을 위한 VOC 데이타의 신뢰성 분석)

  • Kim, Dongwon;Yu, Song Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.217-245
    • /
    • 2016
  • The purpose of this study is to verify how 7 sentiment domains extracted through sentiment analysis from social media have an influence on business performance. It consists of three phases. In phase I, we constructed the sentiment lexicon after crawling 45,447 pieces of VOC (Voice of the Customer) on 26 auto companies from the car community and extracting the POS information and built a seven-sensitive domains. In phase II, in order to retain the reliability of experimental data, we examined auto-correlation analysis and PCA. In phase III, we investigated how 7 domains impact on the market share of three major (GM, FCA, and VOLKSWAGEN) auto companies by using linear regression analysis. The findings from the auto-correlation analysis proved auto-correlation and the sequence of the sentiments, and the results from PCA reported the 7 sentiments connected with positivity, negativity and neutrality. As a result of linear regression analysis on model 1, we indentified that the sentimental factors have a significant influence on the actual market share. In particular, not only posotive and negative sentiment domains, but neutral sentiment had significantly impacted on auto market share. As we apply the availability of data to the market, and take advantage of auto-correlation of the market-related information and the sentiment, the findings will be a huge contribution to other researches on sentiment analysis as well as actual business performances in various ways.

Principal Component Analysis of GPS Height Time Series from 14 Permanent GPS Stations Operated by National Geographic Information Institute (주성분분석을 통한 국토지리정보원 14개 GPS 상시관측소 수직좌표 시계열 분석)

  • Kim, Kyeong-Hui;Park, Kwan-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.361-367
    • /
    • 2010
  • We produced continuous vertical time series of 14 permanent GPS stations operated by National Geographic Information Institute by processing about five years of data. Then we computed the height velocities by using a linear regression fitting of those time series, and did principal component analysis to understand the overall characteristics of the series. The prominent signal obtained as the first mode of PCA results showed an average of 4.2 mm/yr vertical velocity. The values of the first mode eigenvectors were consistent at all sites. Thus, we concluded that all the 14 stations are uplifting nearly at the same velocity for the test period. Then changes of precision before and after removing the first mode signal from the 14 height time series were analyzed. As a result, the precision improved 34.8% on average.

인공 신경망 기법을 이용한 제지공정의 지절 원인 분석

  • 이진희;이학래
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.04a
    • /
    • pp.168-168
    • /
    • 2001
  • 제지공정의 지절 현상은 많은 공정 변수들이 복합적으로 작용하여 발생하는 가장 큰 공정 트러블 중의 하나이다. 지절은 생산량 감소 뿐만 아니라 발생 후 공정의 복구 와 정리, 생산재가동 및 공정의 재안정화를 위해 많은 시간과 비용, 그리고 노력이 투 입되어야 하므로 공정의 효율과 생산성을 크게 저하시키는 요인이다. 그러나 지절 현상 의 복잡성 때문에 이에 대해 쉽게 접근하거나 해결하지 못하고 있는 것이 현실이지만 그 필요성은 더욱 더 증대되고 있다. 본 연구에서는 최근 들어 각종 산업분야에서 복잡 한 공정상의 결점 발견 및 진단에 효과적이라고 인정받고 있는 예측 분석기법인 인공 신경망(artificial neural network) 시율레이션과 일반적인 통계기법 중의 하나인 주성분 분석을 이용하여 제지 공정의 지절 현상의 검토 가능성을 타진하였다. 인공신경망이란 인간두뇌에서 일어나는 자극-반응-학습과정을 모사하여 현실세계에 존재하는 다양한 현상들의 업력벡터와 출력상태 간의 비선형 mapping올 컴퓨터 시율 레이션을 통하여 분석하고자 하는 기법으로, 여러 가지 현상들을 학습을 통해서 인식하 는 신경망 내의 신경단위들이 병렬처리에 의해 많은 양의 자료에 대한 추론이나 판단 을 신속하고 정확하게 해주는 특징이 있으며 실시간 패턴인식이나 분류 응용분야에도 매우 매력적으로 이용되고 있는 방법이다. 이러한 인공 신경망 기법 중에서도 본 연구 에서는 퍼셉트론의 한계점을 극복하기 위하여 입력총과 출력층에 한 개 이상의 은닉층 ( (hidden layer)을 사용하여 다층 네트워으로 구성하고, 모든 입력패턴에 대하여 발생하 는 오차함수를 최소화하는 방향으로 연결강도를 조정하는 back propagation 학습 알고 리즘을 사용하였다. 지절의 원인으로 추정 가능한 공정인자들을 변수로 하여 최적의 인 공신경망을 구축하기 위해 학습률과 모멘트 상수의 변화 및 은닉층의 수와 출력층의 뉴런 수를 조절하는 동의 작업을 거쳐 네트워크의 정확도가 높은 인공신경망을 설계하 였다. 또한 이러한 인공신경망과의 비교분석을 위해 동일한 공정 데이터들올 이용하여 보편적으로 사용하는 통계기법 중의 하나인 주성분회귀분석을 실시하였다. 주성분 분석은 여러 개의 반응변수에 대하여 얻어진 다변량 자료의 다차원적인 변 수들을 축소, 요약하는 차원의 단순화와 더불어 서로 상관되어있는 반응변수들 상호간 의 복잡한 구조를 분석하는 기법이다. 본 발표에서는 공정 자료를 활용하여 인공신경망 과 주성분분석을 통해 공정 트러블의 발생에 영향 하는 인자들을 보다 현실적으로 추 정하고, 그 대책을 모색함으로써 이를 최소화할 수 있는 방안을 소개하고자 한다.

  • PDF

Improving Estimation Ability of Software Development Effort Using Principle Component Analysis (주성분분석을 이용한 소프트웨어 개발노력 추정능력 향상)

  • Lee, Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.75-80
    • /
    • 2002
  • Putnam develops SLIM (Software LIfecycle Management) model based upon the assumption that the manpower utilization during software project development is followed by a Rayleigh distribution. To obtain the manpower distribution, we have to be estimate the total development effort and difficulty ratio parameter. We need a way to accurately estimate these parameters early in the requirements and specification phase before investment decisions have to be made. Statistical tests show that system attributes are highly correlation (redundant) so that Putnam discards one and get a parameter estimator from the other attributes. But, different statistical method has different system attributes and presents different performance. To select the principle system attributes, this paper uses the principle component analysis (PCA) instead of Putnam's method. The PCA's results improve a 9.85 percent performance more than the Putnam's result. Also, this model seems to be simple and easily realize.

Distribution of Organic Matter and $Al_o+1/2Fe_o$ Contents in Soils Using Principal Component and Multiple Regression Analysis in Jeju Island (주성분분석 및 다중회귀분석에 의한 제주도 토양유기물 및 $Al_o+1/2Fe_o$ 함량 분포)

  • Moon, Kyung-Hwan;Lim, Han-Cheol;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.748-754
    • /
    • 2010
  • The contents of soil organic matter (SOM) and $Al_o+1/2Fe_o$ in soils are important criteria for the classification of new Andisols in Soil Taxonomy system. There are many soil types in Jeju Island with various soil forming environments. This paper was conducted to estimate the contents of soil organic matter and the content of ammonium oxalate extracted Al and Fe ($Al_o+1/2Fe_o$) using various environmental variables and to make soil property maps using a statistical analyses. The soil samples were collected from 321 locations and analyzed to measure the contents of SOM and $Al_o+1/2Fe_o$. It was analyzed the relationships among them and various environmental variables such as temperature, precipitation, net primary product, radiation, evapotranspiration, altitude, soil forming energy, topographic wetness index, elevation, difference surrounded area, and distances from the shore and the peak. We can exclude multi-collinearity among environmental variables with principal component analysis and reduce all the variables to 3 principal components. The contents of SOM and $Al_o+1/2Fe_o$ were estimated by multiple regression models and maps of them were made using the models.

Development of Nondestructive Evaluation System for Internal Quality of Watermelon using Acoustic Wave (음파를 이용한 비파괴 수박 내부품질 판정 시스템 개발)

  • Choi, Dong-Soo;Lee, Young-Hee;Choi, Seung-Ryul;Kim, Gi-Young;Park, Jong-Min
    • Food Science and Preservation
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Watermelons (Citrulus vulgaris Schrad) are usually sorted manually by weight, appearance, and acoustic impulse, so grading of maturity and internal quality is subject to inaccuracies. It was necessary to develop a nondestructive evaluation technique of internal watermelon quality to reduce human error. Thus, acoustic characteristics related to internal quality factors were analyzed. Among these factors, three (ripeness, presence of an internal cavity, and blood-colored flesh) were selected for evaluation. The number of peaks and the sum of peak amplitudes for watermelons with blood-colored flesh were lower than for normal fruits. The portable evaluation system has an impact mechanism, a microphone sensor, a signal processing board, an LCD panel, and a battery. A performance test was conducted in the field. The internal quality evaluation model showed 87% prediction accuracy. Validation was conducted on 72 samples. The accuracy of quality evaluation was 83%. The quality of samples was evaluated by an inspector using conventional methods (hitting the watermelon and listening to the sounds), and then compared with prototype results. The quality evaluation accuracy of the prototype was better than that of the inspector. This nondestructive quality evaluation system could be useful in the field, warehouse, and supermarket

Sensory Characteristics of Pork Sausages with Added Citrus Peel and Dried Lentinus edodes Powders (감귤과피분말 및 건 표고버섯을 첨가한 돈육 소시지의 관능적 특성)

  • Kim, Jung-Hyon;Choi, Ju-Rak;Kim, Min-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1623-1630
    • /
    • 2011
  • The effects of addition of citrus peel powders (C 0, 0.5, 1 & 2%), dried Lentinus edodes powders (L 0, 0.5, 1 & 2%), and their combination (C-L) on the chemical, sensory and textural properties of pork sausages were studied. Addition of 0.5, 1 or 2% C, L, and C-L all significantly decreased moisture content, pH, and color a-values of sausage samples, whereas ash content and color b-value were increased (p<0.05). C, L, and C-L did not affect protein, fat, carbohydrates contents or texture characteristics. Sensory evaluation was performed by multivariate data analysis, namely principal component analysis (PCA). Eighty-two percent total variation was observed in the main structured information among the test groups: the first (PC1) and second (PC2) components of variation were 59 and 23%, respectively. Eight parameters (sweet flavor, pork aroma, bitterness, rancidity, salty flavor, color, sour flavor and citrus aroma) were utilized to describe the main sensory characteristic of the sausages. Addition of 0.5, 1 & 2% citrus peel was obviously correlated with PC1 (salty flavor, sour flavor and citrus aroma, pork aroma, and sweet flavor and rancidity), whereas addition of 0.5 & 1% Lentinus edodes was related with PC2 (aroma and rancidity).

A comparison study of inverse censoring probability weighting in censored regression (중도절단 회귀모형에서 역절단확률가중 방법 간의 비교연구)

  • Shin, Jungmin;Kim, Hyungwoo;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.957-968
    • /
    • 2021
  • Inverse censoring probability weighting (ICPW) is a popular technique in survival data analysis. In applications of the ICPW technique such as the censored regression, it is crucial to accurately estimate the censoring probability. A simulation study is undertaken in this article to see how censoring probability estimate influences model performance in censored regression using the ICPW scheme. We compare three censoring probability estimators, including Kaplan-Meier (KM) estimator, Cox proportional hazard model estimator, and local KM estimator. For the local KM estimator, we propose to reduce the predictor dimension to avoid the curse of dimensionality and consider two popular dimension reduction tools: principal component analysis and sliced inverse regression. Finally, we found that the Cox proportional hazard model estimator shows the best performance as a censoring probability estimator in both mean and median censored regressions.

Comparison of Customer Satisfaction Indices Using Different Methods of Weight Calculation (가중치 산출방법에 따른 고객만족도지수의 비교)

  • Lee, Sang-Jun;Kim, Yong-Tae;Kim, Seong-Yoon
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.201-211
    • /
    • 2013
  • This study compares Customer Satisfaction Index(CSI) and the weight for each dimension by applying various methods of weight calculation and attempts to suggest some implications. For the purpose, the study classified the methods of weight calculation into the subjective method and the statistical method. Constant sum scale was used for the subjective method, and the statistical method was again segmented into correlation analysis, principal component analysis, factor analysis, structural equation model. The findings showed that there is difference between the weights from the subjective method and the statistical method. The order of the weights by the analysis methods were classified with similar patterns. Besides, the weight for each dimension by different methods of weight calculation showed considerable deviation and revealed the difference of discrimination and stability among the dimensions. Lastly, the CSI calculated by various methods of weight calculation showed to be the highest in structural equation model, followed by in the order of regression analysis, correlation analysis, arithmetic mean, principal component analysis, constant sum scale and factor analysis. The CSI calculated by each method showed to have statistically significant difference.