• Title/Summary/Keyword: 주성분분석기법

Search Result 336, Processing Time 0.036 seconds

Silhouette-based Gait Recognition Using Homography and PCA (호모그래피와 주성분 분석을 이용한 실루엣 기반 걸음걸이 인식)

  • Jeong Seung-Do;Kim Su-Sun;Cho Tae-Kyung;Choi Byung-Uk;Cho Jung-Won
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • In this paper, we propose a gait recognition method based on gait silhouette sequences. Features of gait are affected by the variation of gait direction. Therefore, we synthesize silhouettes to canonical form by using planar homography in order to reduce the effect of the variation of gait direction. The planar homography is estimated with only the information which exist within the gait sequences without complicate operations such as camera calibration. Even though gait silhouettes are generated from an individual person, fragments beyond common characteristics exist because of errors caused by inaccuracy of background subtraction algorithm. In this paper, we use the Principal Component Analysis to analyze the deviated characteristics of each individual person. PCA used in this paper, however, is not same as the traditional strategy used in pattern classification. We use PCA as a criterion to analyze the amount of deviation from common characteristic. Experimental results show that the proposed method is robust to the variation of gait direction and improves separability of test-data groups.

  • PDF

Feature selection for text data via sparse principal component analysis (희소주성분분석을 이용한 텍스트데이터의 단어선택)

  • Won Son
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.6
    • /
    • pp.501-514
    • /
    • 2023
  • When analyzing high dimensional data such as text data, if we input all the variables as explanatory variables, statistical learning procedures may suffer from over-fitting problems. Furthermore, computational efficiency can deteriorate with a large number of variables. Dimensionality reduction techniques such as feature selection or feature extraction are useful for dealing with these problems. The sparse principal component analysis (SPCA) is one of the regularized least squares methods which employs an elastic net-type objective function. The SPCA can be used to remove insignificant principal components and identify important variables from noisy observations. In this study, we propose a dimension reduction procedure for text data based on the SPCA. Applying the proposed procedure to real data, we find that the reduced feature set maintains sufficient information in text data while the size of the feature set is reduced by removing redundant variables. As a result, the proposed procedure can improve classification accuracy and computational efficiency, especially for some classifiers such as the k-nearest neighbors algorithm.

Application of Multivariate Statistical Techniques to Analyze the Pollution Characteristics of Major Tributaries of the Nakdong River (낙동강 주요 지류의 오염특성 분석을 위한 다변량 통계기법의 적용)

  • Park, Jaebeom;Kal, Byungseok;Kim, Seongmin
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.215-223
    • /
    • 2019
  • In this study, we analyzed the water quality characteristics of major tributaries of Nakdong River through statistical analysis such as correlation analysis, principal component and factor analysis, and cluster analysis. Organic matter and nutrients are highly correlated, and are high in spring and autumn, and seasonal water quality management is required. Principal component and factor analysis showed that 82% of total variance could be explained by 4 principal components such as organic matter, nutrients, nature, and weather. BOD, COD, TOC, and TP items were analyzed as major influencing factors. As a result of the cluster analysis, the four clusters were classified according to seasonal organic matter and nutrient pollution. Kumho River watershed showed high pollution characteristics in all seasons. Therefore, effective management of water quality in tributary streams requires measures in consideration of spatio-temporal characteristics and multivariate statistical techniques may be useful in water quality management and policy formulation.

Fault Diagnosis of Induction Motor Using Clustering and Principal Component Analysis (클러스터링과 주성분 분석기법을 이용한 유도전동기 고장진단)

  • Park Chan-Won;Lee Dae-Jong;Park Sung-Moo;Chun Myung-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.208-211
    • /
    • 2006
  • 본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 패턴인식에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 고장신호를 얻기 위하여 구축하였으며, 취득된 데이터를 이용하여 진단 알고리즘을 구축하였다. 취득된 데이터 중에서 진단을 위해 사용될 훈련데이터는 퍼지 기반 클러스터링 기법을 이용하여 신뢰성 높은 데이터를 선택하여 고장별 신호를 추출하였다. 진단 알고리즘으로는 데이터를 주성분 분석기법을 적용하였으며, 최종 분류를 위해 Euclidean 기반 거리척도 기법을 이용하였다. 다양한 부하 및 고장신호에 대하여 제안된 방법을 적용하여 타당성을 검증하였다.

  • PDF

A Design of GA-based TSK Fuzzy Classifier and Its Application (GA 기반 TSK 퍼지 분류기의 설계와 응용)

  • 곽근창;김승석;유정웅;김승석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.754-759
    • /
    • 2001
  • In this paper, we propose a TSK(Takagi-Sugeno-Kang)-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy c-Means) clustering, ANFIS(Adaptive Neuro-Fuzzy Inference System) and hybrid GA(Genetic Algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive GA) and RLSE(Recursive Least Square Estimate). Finally, we applied the proposed method to Iris data classificationl problems and obtained a better performance than previous works.

  • PDF

Hierarchically penalized sparse principal component analysis (계층적 벌점함수를 이용한 주성분분석)

  • Kang, Jongkyeong;Park, Jaeshin;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.135-145
    • /
    • 2017
  • Principal component analysis (PCA) describes the variation of multivariate data in terms of a set of uncorrelated variables. Since each principal component is a linear combination of all variables and the loadings are typically non-zero, it is difficult to interpret the derived principal components. Sparse principal component analysis (SPCA) is a specialized technique using the elastic net penalty function to produce sparse loadings in principal component analysis. When data are structured by groups of variables, it is desirable to select variables in a grouped manner. In this paper, we propose a new PCA method to improve variable selection performance when variables are grouped, which not only selects important groups but also removes unimportant variables within identified groups. To incorporate group information into model fitting, we consider a hierarchical lasso penalty instead of the elastic net penalty in SPCA. Real data analyses demonstrate the performance and usefulness of the proposed method.

선박운항 안정성 평가를 위한 시뮬레이션 실험조건 도출 연구

  • Gong, In-Yeong;Gwon, Se-Hyeok;Kim, Seon-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.81-83
    • /
    • 2007
  • 항만이나 항로에서의 심층적인 선박운항 안전성 평가를 위한 목적으로 주로 선박운항 시뮬레이션 시스템이 사용되고 있다. 하지만, 실제해상에서 선박이 조우할 수 있는 환경 조건은 매우 다양한 반면, 비용이나 시간적인 제약으로 인하여 실시간 선박운항 시뮬레이션은 극히 한정 된 경우에 대해서만 수행되는 것이 일반적이다. 본 논문에서는, 이러한 실시간 시뮬레이션 실험 조건을 효과적이고 체계적으로 도출하기 위한 통계적 기법에 대하여 제안하고, 이 기법을 실제 선박 운항 안전성 평가를 위한 시뮬레이션 연구에 적용한 실증 분석 결과를 사례 연구로 기술하였다. 실증 분석에는 주성분을 이용한 종합 운항 난이도 산정 방법과 누적 확률분포 개념을 이용하여 선박 운항 난이도가 높은 실험 조건을 실시간 시뮬레이션 실험 조건으로 선택하는 기법을 제시하였다.

  • PDF

Restoration, Prediction and Noise Analysis of Geomagnetic Time-series Data (시계열 지자기 측정 자료의 복원, 예측 및 잡음 분석 연구)

  • Ji, Yoon-Soo;Oh, Seok-Hoon;Suh, Baek-Soo;Lee, Duk-Kee
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.613-628
    • /
    • 2011
  • Restoration, prediction and noise analysis of geomagnetic data measured in the Korean Peninsula were performed. Restoration methods based on an optimized principal component analysis (PCA) and the geostatistical kriging approach were proposed, and its effectiveness was also interpreted. The PCA-based method seemed to be effective to restore the periodical signals and the geostatistical approach was stable to fill the gaps of measurements. To analyze the noise level for each observatory, the geomagnetic time-series was plotted by scattergram which reflects the spatial variation, using data observed during same period. The scattergram showed that the observation made at Cheongyang seemed to have better quality in spatial continuity and stability, and the restoration result was also better than that of Icheon site. For the restoration, both of the methods, geostatistical and optimizaed PCA, showed stable result when the missing of observation was within 20 points. However, in case of more missing observations than 20 points and prediction problem, the optimized PCA seemed to be closer to the real observation considering the frequency-domain characteristics. The prediction using the optimized PCA seems to be plausible for one day of period for interpretation.

Application of the supplementary principal component analysis for the 1982-1992 Korean Pro Baseball data (89-92 한국 프로야구의 각 팀과 부문별 평균 성적에 대한 추가적 주성분분석의 응용)

  • 최용석;심희정
    • The Korean Journal of Applied Statistics
    • /
    • v.8 no.1
    • /
    • pp.51-60
    • /
    • 1995
  • Given an $n \times p$ data matrix, if we add the $p_s$ variables somewhat different nature than the p variables to this matrix, we have a new $n \times (p+p_s)$ data matrix. Because of these $p_s$ variables, the traditional principal component analysis can't provide its efficient results. In this study, to improve this problem we review the supplementary principal component analysis putting $p_s$ variables to supplementary variable. This technique is based on the algebraic and geometric aspects of the traditional principal component analysis. So we provide a type of statistical data analysis for the records of eight teams and fourteen fields of the 1982-1992 Korean Pro Baseball Data based on the supplementary principal component analysis and the traditional principal component analysis. And we compare the their results.

  • PDF