• Title/Summary/Keyword: 주변화소

Search Result 197, Processing Time 0.025 seconds

The Effect of Training Patch Size and ConvNeXt application on the Accuracy of CycleGAN-based Satellite Image Simulation (학습패치 크기와 ConvNeXt 적용이 CycleGAN 기반 위성영상 모의 정확도에 미치는 영향)

  • Won, Taeyeon;Jo, Su Min;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2022
  • A method of restoring the occluded area was proposed by referring to images taken with the same types of sensors on high-resolution optical satellite images through deep learning. For the natural continuity of the simulated image with the occlusion region and the surrounding image while maintaining the pixel distribution of the original image as much as possible in the patch segmentation image, CycleGAN (Cycle Generative Adversarial Network) method with ConvNeXt block applied was used to analyze three experimental regions. In addition, We compared the experimental results of a training patch size of 512*512 pixels and a 1024*1024 pixel size that was doubled. As a result of experimenting with three regions with different characteristics,the ConvNeXt CycleGAN methodology showed an improved R2 value compared to the existing CycleGAN-applied image and histogram matching image. For the experiment by patch size used for training, an R2 value of about 0.98 was generated for a patch of 1024*1024 pixels. Furthermore, As a result of comparing the pixel distribution for each image band, the simulation result trained with a large patch size showed a more similar histogram distribution to the original image. Therefore, by using ConvNeXt CycleGAN, which is more advanced than the image applied with the existing CycleGAN method and the histogram-matching image, it is possible to derive simulation results similar to the original image and perform a successful simulation.

Parametric Equation of Hough Transform for Log-Polar Image Representation (로그폴라 영상 표현을 위한 매개변수 방정식의 Hough 변환)

  • Choi, Il;Kim, Dong-su;Chien, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.455-461
    • /
    • 2002
  • This paper presents a new parametric log line equation of polar form for Hough transform in log-polar plane, in which it can remove the well-known unboundedness problem of Hough parameters. Bolduc's method is used to generate a log-polar image dividing the fovea and periphery from a Cartesian image. Edges of the fovea and periphery are detected by using the Sobel mask and the proposed space-variant gradient mask, and are combined in the log-polar plane. The sampled points that might constitute a log line are quite sparse in a deep peripheral region due to severe under-sampling, which is an inherent property of LPM. To cope with such under-sampling, we determine the values of cumulative cells in Hough space by using the space-variant weighting. In our experiments, the proposed method demonstrates its validity of detecting not only the lines passing through both the fovea and periphery but also the lines in a deep periphery.

Eliminating Color Mixing of Projector-Camera System for Fast Radiometric Compensation (컬러 보정의 고속화를 위한 프로젝터-카메라 시스템의 컬러 혼합 성분 제거)

  • Lee, Moon-Hyun;Park, Han-Hoon;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.941-950
    • /
    • 2008
  • The quality of projector output image is influenced by the surrounding conditions such as the shape and color of screen, and environmental light. Therefore, techniques that ensure desirable image quality, regardless of such surrounding conditions, have been in demand and are being steadily developed. Among the techniques, radiometric compensation is a representative one. In general, radiometric compensation is achieved by measuring the color of the screen and environmental light based on an analysis of camera image of projector output image and then adjusting the color of projector input image in a pixel-wise manner. This process is not time-consuming for small sizes of images but the speed of the process drops linearly with respect to image size. In large sizes of images, therefore, reducing the time required for performing the process becomes a critical problem. Therefore, this paper proposes a fast radiometric compensation method. The method uses color filters for eliminating the color mixing between projector and camera because the speed of radiometric compensation depends mainly on measuring color mixing between projector and camera. By using color filters, there is no need to measure the color mixing. Through experiments, the proposed method improved the compensation speed by 44 percent while maintaining the projector output image quality. This method is expected to be a key technique for widespread use of projectors for large-scale and high-quality display.

Gaussian Noise Reduction Algorithm using Self-similarity (자기 유사성을 이용한 가우시안 노이즈 제거 알고리즘)

  • Jeon, Yougn-Eun;Eom, Min-Young;Choe, Yoon-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.1-10
    • /
    • 2007
  • Most of natural images have a special property, what is called self-similarity, which is the basis of fractal image coding. Even though an image has local stationarity in several homogeneous regions, it is generally non-stationarysignal, especially in edge region. This is the main reason that poor results are induced in linear techniques. In order to overcome the difficulty we propose a non-linear technique using self-similarity in the image. In our work, an image is classified into stationary and non-stationary region with respect to sample variance. In case of stationary region, do-noising is performed as simply averaging of its neighborhoods. However, if the region is non-stationary region, stationalization is conducted as make a set of center pixels by similarity matching with respect to bMSE(block Mean Square Error). And then do-nosing is performed by Gaussian weighted averaging of center pixels of similar blocks, because the set of center pixels of similar blocks can be regarded as nearly stationary. The true image value is estimated by weighted average of the elements of the set. The experimental results show that our method has better performance and smaller variance than other methods as estimator.

Real-Time Virtual-View Image Synthesis Algorithm Using Kinect Camera (키넥트 카메라를 이용한 실시간 가상 시점 영상 생성 기법)

  • Lee, Gyu-Cheol;Yoo, Jisang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.409-419
    • /
    • 2013
  • Kinect released by Microsoft in November 2010 is a motion sensing camera in xbox360 and gives depth and color images. However, Kinect camera also generates holes and noise around object boundaries in the obtained images because it uses infrared pattern. Also, boundary flickering phenomenon occurs. Therefore, we propose a real-time virtual-view video synthesis algorithm which results in a high-quality virtual view by solving these problems. In the proposed algorithm, holes around the boundary are filled by using the joint bilateral filter. Color image is converted into intensity image and then flickering pixels are searched by analyzing the variation of intensity and depth images. Finally, boundary flickering phenomenon can be reduced by converting values of flickering pixels into the maximum pixel value of a previous depth image and virtual views are generated by applying 3D warping technique. Holes existing on regions that are not part of occlusion region are also filled with a center pixel value of the highest reliability block after the final block reliability is calculated by using a block based gradient searching algorithm with block reliability. The experimental results show that the proposed algorithm generated the virtual view image in real-time.

A study of Efficient Error Concealment using Edge Direction (에지방향을 이용한 효율적인 오류 보상 방법 연구)

  • Kwon, Yun-Sek;Jeon, Su-Yeol;Oh, Seoung-Jun;Park, Ho-Chong;Ahn, Chang-Beom;Kim, Kyu-Heon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.35-38
    • /
    • 2005
  • 압축된 영상의 비트스트림에 오류가 발생할 경우 영상을 원할 때 심각한 왜곡이 발생하고, 이 때문에 멀티미디어 서비스에서 오류 보상 방법은 더욱 중요한 기술로 대두되고 있다. 기존의 연속된 블록을 복원하는 Hsia방법에서는 상하에 인접한 블록의 경계면에 따라 화소 값을 비교하고 정합벡터를 구하였다. 이와 같이 구해지 정합벡터는 주변 블록의 에지 분포에 대한 고려가 배제되기 때문에 정확한 블록의 복원을 이루어낼 수 없다. 이러한 문제를 해결하기 주변 블록의 에지 분포를 고려한다. 오류 블록을 중심으로 상단과 하단의 에지 분포를 고려하여 에지 방향으로 보간한다. 이때 에지 검출을 위해 Sobel 연산자를 이용하고 그 임계값은(Just-Noticeable-Distortion)/MND(Minimally- Noticeable Distortion)로 한다. 에지의 뭉개짐 현상을 막기 위하여 상단 블록과 하단 블록에 에지가 존재 하지 않을 때와 존재할 때를 구분해서 보간한다. 연속된 블록에 발생한 오류를 제안하는 방법으로 보상 할 경우 PSNR이 최대 2dB이상 향상된다.

  • PDF

Error Concealment Technique for Image Quality Improvement of Digital TV (디지털 TV 화질 개선을 위한 전송 오류 은폐 기법)

  • 서재원;호요성
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06b
    • /
    • pp.35-40
    • /
    • 1999
  • 이 논문은 디지털 TV의 압축 비트열을 전송할 때, 채널 오류로 인해 디지털 TV 디코더에서 화면을 재생할 때 발생할 수 있는 화질의 저하를 최소화시키는 방법을 기술한다. 텔레비전과 같은 단방향 방송 시스템에서 전송 도중에 오류가 발생하여 수신측에서 전송 오류를 제대로 정정하기 곤란할 때, 재생된 화면이 심각하게 훼손될 수 있다. 이때 오류로 인한 화면의 손상을 주변의 공간적 또는 시간적 상관 정보를 이용하여 화면을 복원하는 동작을 오류 은폐라고 한다. 최근 디지털 TV나 고선명 TV의 기본 부호화 방식으로 많이 사용하고 있는 MPEG 비디오 표준 방식은 공간적인 중복 정보를 압축하기 위해 DCT 변환을 수행하며, 시간적인 중복 정보를 압축하기 위해 움직임 예측과 움직임 보상 방법을 이용한다. 또한 MPEG 비디오 압축 방식은 일종의 차분 부호화 방법을 사용하기 때문에 현재 화면에서 오류가 발생하면 현재 화면뿐만 아니라, 시간적으로 나중에 부호화된 화면에도 오류가 전파된다. 본 논문에서는 MPEG 비트열의 채널 오류의 영향을 분석하여 화면간에 존재하는 시간적인 중복성을 이용하여 움직임 벡터를 추정하여 손상된 부분을 은폐시키는 방법을 제안한다. 기본적으로 손상된 매크로블록의 위와 아래로 인접한 화소값들을 움직임 벡터의 추정에 사용한다. 제안된 방법들 중에서 주변 움직임 벡터들의 가중치를 이용한 평균값 방법과 초기 움직임 벡터를 이용한 확장 영역 움직임 추정 방법이 우수한 결과를 보였다.

  • PDF

Region Analysis of Business Card Images Acquired in PDA Using DCT and Information Pixel Density (DCT와 정보 화소 밀도를 이용한 PDA로 획득한 명함 영상에서의 영역 해석)

  • 김종흔;장익훈;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1159-1174
    • /
    • 2004
  • In this paper, we present an efficient algorithm for region analysis of business card images acquired in a PDA by using DCT and information pixel density. The proposed method consists of three parts: region segmentation, information region classification, and text region classification. In the region segmentation, an input business card image is partitioned into 8 f8 blocks and the blocks are classified into information and background blocks using the normalized DCT energy in their low frequency bands. The input image is then segmented into information and background regions by region labeling on the classified blocks. In the information region classification, each information region is classified into picture region or text region by using a ratio of the DCT energy of horizontal and vertical edge components to that in low frequency band and a density of information pixels, that are black pixels in its binarized region. In the text region classification, each text region is classified into large character region or small character region by using the density of information pixels and an averaged horizontal and vertical run-lengths of information pixels. Experimental results show that the proposed method yields good performance of region segmentation, information region classification, and text region classification for test images of several types of business cards acquired by a PDA under various surrounding conditions. In addition, the error rates of the proposed region segmentation are about 2.2-10.1% lower than those of the conventional region segmentation methods. It is also shown that the error rates of the proposed information region classification is about 1.7% lower than that of the conventional information region classification method.

Scattered Point Noise Filtering Method for Image Reconstruction Performance Enhancing of White Light Interfrometry (높이영상에 산포되어 있는 점 노이즈 처리를 통한 백색광 간섭계의 영상 복원력 향상)

  • Yim, Hae-Dong;Lee, Min-Woo;Lee, Seung-Gol;Park, Se-Geun;Lee, El-Hang;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.21-25
    • /
    • 2010
  • In this paper, in order to enhance the image reconstruction performance of white light scanning interferometry(WLI), we demonstrate the scattered point noise filtering performance of post-processing methods. Median filtering is similar to using an averaging filter. Because the median value is less sensitive than the mean to extreme values, the median filter can remove the scattered point noise from a height-map without significantly reducing the sharpness of the image. In several specific cases, however, the median filter can't remove the scattered point noise. Therefore, we propose a comparative mean filter that uses order-statistic filtering and the mean of the neighborhood pixels. The performance is demonstrated by measuring an array of metal solder balls fabricated on PCB. The proposed method reduced the noise pixels by 4.4 percent.

Land-Cover Change Detection of Western DMZ and Vicinity using Spectral Mixture Analysis of Landsat Imagery (선형분광혼합화소분석을 이용한 서부지역 DMZ의 토지피복 변화 탐지)

  • Kim, Sang-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.158-167
    • /
    • 2006
  • The object of this study is to detect of land-cover change in western DMZ and vicinity. This was performed as a basic study to construct a decision support system for the conservation or a sustainable development of the DMZ and Vicinity near future. DMZ is an is 4km wide and 250km long and it's one of the most highly fortified boundaries in the world and also a unique thin green line. Environmentalists want to declare the DMZ as a natural reserve and a biodiversity zone, but nowadays through the strengthening of the inter-Korean economic cooperation, some developers are trying to construct a new-town or an industrial complex inside of the DMZ. This study investigates the current environmental conditions, especially deforestation of the western DMZ adopting remote sensing and GIS techniques. The Land-covers were identified through the linear spectvral mixture analysis(LSMA) which was used to handle the spectral mixture problem of low spatial resolution imagery of Landsat TM and ETM+ imagery. To analyze quantitative and spatial change of vegetation-cover in western DMZ, GIS overlay method was used. In LSMA, to develop high-quality fraction images, three endmembers of green vegetation(GV), soil, water were driven from pure features in the imagery. Through 15 years, from 1987 to 2002, forest of western DMZ and vicinity was devastated and changed to urban, farmland or barren land. Northern part of western DMZ and vicinity was more deforested than that of southern part. ($52.37km^2$ of North Korean forest and $39.04km^2$ of South Korean were change to other land-covers.) In case of North Korean part, forest changed to barren land and farmland and in South Korean part, forest changed to farmland and urban area. Especially, In North Korean part of DMZ and vicinity, $56.15km^2$ of farmland changed to barren land through 15 years, which showed the failure of the 'Darakbat' (terrace filed) project which is one of food increase projects in North Korea.

  • PDF