Both investors and researchers are attentive to the prediction of stock price movement directions since the accurate prediction plays an important role in strategic decision making on stock trading. According to previous studies, taken together, one can see that different factors are considered depending on stock markets and prediction periods. This paper aims to analyze what data mining techniques show better performance with some representative index and stock price datasets in the Korea stock market. In particular, extreme gradient boosting technique, proving itself to be the fore-runner through recent open competitions, is applied to the prediction problem. Its performance has been analyzed in comparison with other data mining techniques reported good in the prediction of stock price movement directions such as random forests, support vector machines, and artificial neural networks. Through experiments with the index/price datasets of 12 years, it is identified that the gradient boosting technique is the best in predicting the movement directions after 1 to 4 days with a few partial equivalence to the other techniques.
Neural networks have been used to predict the direction of stock index movement from past data. The conventional research that predicts the upward or downward movement of the stock index predicts a rise or fall even with small changes in the index. It is highly likely that losses will occur when trading ETFs by use of the prediction. In this paper, a neural network model that predicts the movement direction of the daily KOrea composite Stock Price Index (KOSPI) to reduce ETF trading losses and earn more than a certain amount per trading is presented. The proposed model has outputs that represent rising (change rate in index ${\geq}{\alpha}$), falling (change rate ${\leq}-{\alpha}$) and neutral ($-{\alpha}$ change rate < ${\alpha}$). If the forecast is rising, buy the Leveraged Exchange Traded Fund (ETF); if it is falling, buy the inverse ETF. The hit ratio (HR) of PNN1 implemented in this paper is 0.720 and 0.616 in the learning and the evaluation respectively. ETF trading yields a yield of 8.386 to 16.324 %. The proposed models show the better ETF trading success rate and yield than the neural network models predicting KOSPI.
Journal of the Korean Data and Information Science Society
/
v.20
no.6
/
pp.991-998
/
2009
This paper deals with directivity forecasting of time series which is useful for futures trading in stock market. Directivity forecasting of time series is to forecast whether a given time series will rise or fall at next observation time point. For directional forecasting, we consider time regression model and ARIMA model. In particular, we study two statistics, intra-model and extra-model deviation and then show usefulness of intra-model deviation.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.193-193
/
2020
집중호우로 인한 이재민 발생, 침수 등 많은 인명 및 재산 피해가 지속적으로 발생함에 따라, 홍수재해를 사전에 대응하는 다양한 방법에 대한 관심이 증가하고 있다. 본 연구에서는 레이더 반사도를 이용하여 강우의 이동방향과 이동속도를 추정하여 초단기 정량강우예측(QPF)이 가능한 기법을 개발하고, 2016년 태풍 차바 사상에 대하여 비슬산 레이더자료를 이용하여 분석을 실시하였다. 개발기법은 1단계 레이더 강우강도 앙상블 멤버 생성, 2단계 레이더 강우강도 이동속도 계산, 3단계 레이더 강우강도 앙상블 초단기 예보, 4단계 초단기 예보 검증의 과정으로 이루어진다. 본 연구결과물인 레이더 기반 초단기 강우예측자료는 수치예보기반 강우예측자료 및 다양한 레이더 기반 초단기예보자료들과 함께 강우예측율 향상에 기여할 것으로 판단된다.
Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
/
1991.07a
/
pp.36-39
/
1991
현지 해안에서 발생하고 있는 표사이동량을 정확히 예측하기 위해서는 내습파랑의 방향 분산성과 불규칙성이 표사이동량에 어떠한 영향을 줄 것 인가에 대해 명백히 해둘 필요가 있다. 본 연구는 표사유송흐름으로서 해빈류의 추진적이 되는 radiation stress에 착목하여, 그들에 미치는 입사파랑의 방향분산성 및 불규칙성의 영향에 대하여, 주로 파별 해석법에 근거를 두고 수치적인 검사를 행한 것이다.(중략)
전통적으로 3차원 애니메이션에서 캐릭터의 동작에 관한 연구는 주로 동작의 사실적인 표현에 중점을 두고 있다. 그러나 이러한 사실적인 애니메이션은 전통적인 2차원 애니메이션에 익숙한 관객들이 어색함을 느끼는 원인이 되기도 한다 이로 인해 전통적인 2차원 애니메이션의 기법을 3차원 애니메이션에 적용하는 비사실적 (non photorealistic) 애니메이션 기법이 연구되고 있다. 본 논문에서는 전통적인 2차원 애니메이션기법 중 하나인 기대 효과(anticipation effect)를 3차원 애니메이션의 캐릭터 동작에 적용하는 자동화된 방법을 제시한다. 전통적인 2차원 애니메이션 기법에 따르면 기대 효과는 애니메이션을 더 설득력 있고 풍부하게 만드는 역할을 한다고 알려져 있다. 기대 효과는 주요한 동작이 일어나기 이전에 반대 방향의 동작이 이루어지는 것으로 나타난다. 3차원 애니메이션에서 캐릭터의 동작은 각 관절의 회전과 캐릭터 중심의 이동으로 표현되기 때문에, 주요한 동작에 대하여 각 관절의 회전과 캐릭터 중심의 이동에서 반대 방향의 움직임을 찾아 주요한 동작 이전에 연결하는 것으로 기대 효과의 동작을 표현할 수 있다. 모션 캡쳐나 키 프레임 방법을 통해 미리 제작된 애니메이션 파일로부터 기대효과를 생생하기 위해 동작 데이터를 분석하여, 기대 효과의 추가가 필요한 주요 동작의 각 관절별 회전을 외삽하여 반대 방향의 회전 움직임을 생생하고 무게 중심의 이동을 예측하여 주요 동작과 반대 방향의 움직임을 갖는 기대 동작을 생성한다. 이후, 생성된 기대 동작과 원래의 동작을 기대 효과의 타이밍을 고려하여 합성하는 것으로 기대효과가 포함된 자연스러운 애니메이션 동작을 얻을 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.156-159
/
2017
본 논문은 5G 네트워크의 주요 요구사항인 1ms 이내의 지연 시간을 만족하기 위해 새로운 SDN 기반 핸드오버 방식을 제안한다. UE로부터 이동성 정보와 BS의 상태 정보를 SDN 컨트롤러가 수집하고 가공된 데이터를 이용하여 다음 셀을 예측한다. 이 때, 셀 예측 시 계산량을 줄이기 위해 LP 문제 해결 기법을 적용한다. 또한, 예측된 셀에 대해 채널을 선 할당 하여 핸드오버 소요 시간을 줄이고 빠르고, 끊김 없는 서비스를 제공하게 된다. 실험을 통해 제안 방법은 이동 방향에 따라 신호 세기, 체류시간이 길고 셀의 부하가 적은 셀을 찾아냄을 알 수 있다.
For the battlefield analysis, it is required to get correct information about the identification and moving status of target enemy units. However, it is difficult for us to collect all of the information perfectly, because of the technology of communications, jamming, and tactics. Therefore, we need a reasoning function that predicts and analyzes future moving status for target units by using collected moving information and domain knowledge. Especially. since the moving units have characteristics of moving objects, which change their position and shape over time, they require functions to manage and predict locations of moving objects. Therefore, in this paper, we propose a location prediction system of moving units for battlefield analysis. The proposed system not only predicts unknown units, unidentified units, and main strike directions to application domain for battlefield analysis, but also estimates the past or future locations of moving objects not stored in a database.
Prediction of a stock price has been a subject of interest for a long time in financial markets, and thus, many studies have been conducted in various directions. As the efficient market hypothesis introduced in the 1970s acquired supports, it came to be the majority opinion that it was impossible to predict stock prices. However, recent advances in predictive models have led to new attempts to predict the future prices. Here, we summarize past studies on the price prediction by evaluation measures, and predict the direction of stock prices of Samsung Electronics, LG Chem, and NAVER by applying various machine learning models. In addition to widely used technical indicator variables, accounting indicators such as Price Earning Ratio and Price Book-value Ratio and outputs of the hidden Markov Model are used as predictors. From the results of our analysis, we conclude that no models show significantly better accuracy and it is not possible to predict the direction of stock prices with models used. Considering that the models with extra predictors show relatively high test accuracy, we may expect the possibility of a meaningful improvement in prediction accuracy if proper variables that reflect the opinions and sentiments of investors would be utilized.
Kim Jung-Hyun;Jang Yong-Il;Bae Hae-Young;Park Soon-Young;Oh Young-Hwan
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.70-72
/
2005
지금까지의 이동체 인덱스에 대한 연구는 주로 인덱스 구성 후에 발생하는 질의 처리 효율성에 두고 있다. 다수의 이동체 인덱스에서 이동체 데이터의 갱신 연산에 의한 인덱스 재구성에 대한 디스크 접근 오버헤드를 고려하지 않았다. 이동체 데이터 처리를 위한 대표적 인덱스 구조인 R-tree는 이동체에 대한 갱신 연산 비용이 많이 든다. 이런 R-tree의 단점을 보완하기 위해 이동체가 가지는 MBR값이 동적으로 변화하는 환경에 맞추어 R트리의 갱신 비용을 절감하여 처리하는 LUR-tree가 제안되었다. 본 논문에서는 마른 데이터 생성 속도에 적합하도록 디스크 접근 오버헤드를 고려해서 LUR-tree를 관리할 수 있는 현재 인덱스에 대한 다량 삽입 기법을 제안한다. 이 기법에서는 다차원 인덱스 구조에서의 다량 삽입 기법을 위한 간단한 버퍼링 기법을 사용한다. LUR-tree의 단말 노드 정보를 관리하는 보조 인덱스를 추가하여 갱신 연산에 따른 노드의 분할과 합병을 예측한다. 예측된 결과를 바탕으로 노드의 변화를 최소화하는 방향으로 데이터의 갱신 순서를 정하여 데이터 갱신에 따른 노드의 분할과 합병을 최소화한다. 실험을 통해 제안한 기법을 이용한 다량 삽입이 기존의 다량 삽입 기법들과 비교해 인덱스의 갱신 비용을 감소시키는 것을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.