• Title/Summary/Keyword: 주가 예측

Search Result 6,594, Processing Time 0.03 seconds

VECM모형을 이용한 거시경제변수와 주가간의 관계에 대한 실증분석

  • Hwang, Seon-Ung;Choe, Jae-Hyeok
    • The Korean Journal of Financial Studies
    • /
    • v.12 no.1
    • /
    • pp.183-213
    • /
    • 2006
  • 본 연구의 목적은 공적분 검정과 예측오차 분산분해 방법을 이용하여 우리나라 주식시장에서 주가지수와 거시경제 변수들과의 계량적 관계를 파악하고 종합주가지수와 밀접한 관련성이 있는 변수를 사용하여 종합주가지수와 거시경제변수들 사이의 모형을 추정하는 것이다. Johansen 공적분 검증을 이용한 결과를 보면 종합주가지수와 7개의 거시경제변수들(총통화, 소비자물가지수, 금리, 산업생산지수, 원 달러 환율, 국제원유가격, 경상수지) 사이에 상당히 밀접한 연관성이 있으며, 이들 변수들 사이에 장기적 균형 관계가 존재하였다. 예측오차 분산분해 방법을 사용한 분석결과에서는 종합주가지수의 분산을 예측하는데 있어서 이들 거시경제변수들의 설명력이 매우 높게 나타났다. 또한 우리나라의 주식시장에서는 금리, 국제원유가격, 경상수지 등의 요인보다는 원 달러 환율, 소비자물가지수, 산업생산의 비중이 더 크다는 사실을 알 수 있었다. 우리나라의 자본시장에서는 1997년 말 외환위기를 전후로 하여 현저한 구조적 변화가 존재하였기 때문에 백터오차수정모형을 설정할 때에는 외환위기 이전기간과 이후기간으로 나누어서 분석하는 것이 더욱 타당함을 확인할 수 있었다.

  • PDF

Comparison of Stock Price Forecasting Performance by Ensemble Combination Method (앙상블 조합 방법에 따른 주가 예측 성능 비교)

  • Yang, Huyn-Sung;Park, Jun;So, Won-Ho;Sim, Chun-Bo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.524-527
    • /
    • 2022
  • 본 연구에서는 머신러닝(Machine Learning, ML)과 딥러닝(Deep Learning, DL) 모델을 앙상블(Ensemble)하여 어떠한 주가 예측 방법이 우수한지에 대한 연구를 하고자 한다. 연구에 사용된 모델은 하이퍼파라미터(Hyperparameter) 조정을 통하여 최적의 결과를 출력한다. 앙상블 방법은 머신러닝과 딥러닝 모델의 앙상블, 머신러닝 모델의 앙상블, 딥러닝 모델의 앙상블이다. 세 가지 방법으로 얻은 결과를 평균 제곱근 오차(Root Mean Squared Error, RMSE)로 비교 분석하여 최적의 방법을 찾고자 한다. 제안한 방법은 주가 예측 연구의 시간과 비용을 절약하고, 최적 성능 모델 판별에 도움이 될 수 있다고 사료된다.

Hybrid Machine Learning Model for Predicting the Direction of KOSPI Securities (코스피 방향 예측을 위한 하이브리드 머신러닝 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.9-16
    • /
    • 2021
  • In the past, there have been various studies on predicting the stock market by machine learning techniques using stock price data and financial big data. As stock index ETFs that can be traded through HTS and MTS are created, research on predicting stock indices has recently attracted attention. In this paper, machine learning models for KOSPI's up and down predictions are implemented separately. These models are optimized through a grid search of their control parameters. In addition, a hybrid machine learning model that combines individual models is proposed to improve the precision and increase the ETF trading return. The performance of the predictiion models is evaluated by the accuracy and the precision that determines the ETF trading return. The accuracy and precision of the hybrid up prediction model are 72.1 % and 63.8 %, and those of the down prediction model are 79.8% and 64.3%. The precision of the hybrid down prediction model is improved by at least 14.3 % and at most 20.5 %. The hybrid up and down prediction models show an ETF trading return of 10.49%, and 25.91%, respectively. Trading inverse×2 and leverage ETF can increase the return by 1.5 to 2 times. Further research on a down prediction machine learning model is expected to increase the rate of return.

Real-Time Stock Price Prediction using Apache Spark (Apache Spark를 활용한 실시간 주가 예측)

  • Dong-Jin Shin;Seung-Yeon Hwang;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.79-84
    • /
    • 2023
  • Apache Spark, which provides the fastest processing speed among recent distributed and parallel processing technologies, provides real-time functions and machine learning functions. Although official documentation guides for these functions are provided, a method for fusion of functions to predict a specific value in real time is not provided. Therefore, in this paper, we conducted a study to predict the value of data in real time by fusion of these functions. The overall configuration is collected by downloading stock price data provided by the Python programming language. And it creates a model of regression analysis through the machine learning function, and predicts the adjusted closing price among the stock price data in real time by fusing the real-time streaming function with the machine learning function.

Information Arrival and Stock Market Volatility Dynamics (정보(情報)의 발생(發生)과 주가(株價)의 변동성(變動性))

  • Rhee, Il-King
    • The Korean Journal of Financial Management
    • /
    • v.16 no.2
    • /
    • pp.285-308
    • /
    • 1999
  • 증권의 가격형성에 유리한 뉴스와 불리한 뉴스가 도착할 때 이 뉴스가 주가의 변동성에 미치는 영향의 정도는 차이가 있다. 불리한 뉴스가 변동성에 미치는 영향도가 유리한 뉴스가 변동성에 미치는 영향도보다 크다. 따라서 불리한 뉴스가 발생할 때 형성되는 변동성의 양이 유리한 뉴스의 도착시보다 크다. 그리고 충격의 크기에 따라 이 충격이 야기하는 변동성의 양의 크기에도 차이가 존재한다. 일반 자기회귀 조건부 이분산 과정은 유리한 뉴스와 불리한 뉴스를 대칭적으로 반영하고 있다. 이 뉴스들을 비대칭적으로 포착하는 자기회귀 조건부 이분산 과정의 모형들을 실증적으로 분석하였다. 뉴스의 비대칭성과 규모를 적절히 포착하고 있는 모형들이 비선형 일반 자기회귀 조건부 이분산 과정, 지수 일반 자기회귀 조건부 이분산 과정과 정보 포착 자기회귀 조건부 이분간 과정임이 발견되었다. 이 중 비선형 일반 자기회귀 조건부 이분산 과정이 가장 좋은 모형으로 보인다. 비선형 일반 자기회귀 조건부 이분산 과정의 경우 예측오차의 승멱(power)이 약 1.5이다. 따라서 일반 자기회귀 조건부 이분산 과정의 예측오차의 승멱인 2에 비하여 작다. 이 사실은 일반 자기회귀 조건부 이분산의 예측오차의 승멱이 과도하게 측정되고 없음을 알 수 있다. 뉴스의 비대칭성과 규모를 반영하고 있는 모형들은 한결같이 예측오차의 크기에 적절한 가중치를 부여하여 예측오차의 크기를 조정하고 있다. 이 모형의 성질과 실증분석의 결과에 의하여 예측오차의 승멱은 2 이하로 수정하여 사용해야 한다는 점이 시사되고 있다. 음의 충격이 양의 충격보다 주가의 변동성을 크게 하고 없음이 발견되었다. 주가형성에 유리한 뉴스와 불리한 뉴스가 주가의 변동성에 미치는 영향의 차이와 충격의 중대성을 양으로 표시하는 규모의 차이를 반영해주는 변수들의 추정된 계수가 미국과 일본보다 절대값에 있어서 상당히 작다. 이 현상은 뉴스의 비대칭성과 규모보다는 발생하는 충격, 즉 뉴스 자체에 보다 민감하게 반응하고 있음을 보여주고 있다. 물론 투자자들이 뉴스의 비대칭성과 규모를 완전히 무시하고 투자활동을 전개하고 있다는 것을 의미하는 것은 아니다.

  • PDF

KOSPI directivity forecasting by time series model (시계열 모형을 이용한 주가지수 방향성 예측)

  • Park, In-Chan;Kwon, O-Jin;Kim, Tae-Yoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.991-998
    • /
    • 2009
  • This paper deals with directivity forecasting of time series which is useful for futures trading in stock market. Directivity forecasting of time series is to forecast whether a given time series will rise or fall at next observation time point. For directional forecasting, we consider time regression model and ARIMA model. In particular, we study two statistics, intra-model and extra-model deviation and then show usefulness of intra-model deviation.

  • PDF

밀도 기반 공간 군집체계를 반영한 해양사고 위험 예측 모델 개발에 관한 연구

  • 양지민;최충정;백연지;임광현;노유나
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.146-147
    • /
    • 2023
  • 해양사고는 도로교통과 달리 지속적으로 증가하고 있으며, 인명피해가 주로 발생하는 주요 사고의 치사율은 도로교통의 11.7배 이상이다. 해양사고는 외부 환경에 따라 사고 위치가 변하고 즉각적인 조치가 어려워 타 교통에 비해 대형 사고로 이어질 가능성이 매우 크다. 그러나 여전히 사고가 발생하고 난 후 대응하는 등 사후적 관리 단계에 무르고 있어 사고의 주요 요인을 사전에 식별·관리하는 선제적 관리단계로의 전환 필요성이 대두되고 있다. 따라서 본 연구에서는 해양사고 발생 지점 밀도 기반의 가변 공간 군집체계를 반영한 해양사고 예측모델을 개발하였다. 반복적인 공간 가산분석을 통해 밀도가 높을수록 작은 규모의 격자 체계를 가질 수 있도록 상세한 공간 군집체계를 구성하였으며, 단순 사고 위험도 예측뿐만 아닌 사고 인과관계를 설명할 수 있는 BN(Bayesian Network) 기반의 모형을 사용하여 해양사고 위험예측 모델을 개발하였다. 또한, Cost-of-Omission을 통해 해양사고 예측확률의 변화와 각 변수들의 영향력을 확인하였으며, 월별 해양사고예측 결과를 GIS를 활용하여 2D/3D 기반으로 시각화하였다.

  • PDF

Software Defect Prediction Based on SAINT (SAINT 기반의 소프트웨어 결함 예측)

  • Sriman Mohapatra;Eunjeong Ju;Jeonghwa Lee;Duksan Ryu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.236-242
    • /
    • 2024
  • Software Defect Prediction (SDP) enhances the efficiency of software development by proactively identifying modules likely to contain errors. A major challenge in SDP is improving prediction performance. Recent research has applied deep learning techniques to the field of SDP, with the SAINT model particularly gaining attention for its outstanding performance in analyzing structured data. This study compares the SAINT model with other leading models (XGBoost, Random Forest, CatBoost) and investigates the latest deep learning techniques applicable to SDP. SAINT consistently demonstrated superior performance, proving effective in improving defect prediction accuracy. These findings highlight the potential of the SAINT model to advance defect prediction methodologies in practical software development scenarios, and were achieved through a rigorous methodology including cross-validation, feature scaling, and comparative analysis.

A Case Study on Crime Prediction using Time Series Models (시계열 모형을 이용한 범죄예측 사례연구)

  • Joo, Il-Yeob
    • Korean Security Journal
    • /
    • no.30
    • /
    • pp.139-169
    • /
    • 2012
  • The purpose of this study is to contribute to establishing the scientific policing policies through deriving the time series models that can forecast the occurrence of major crimes such as murder, robbery, burglary, rape, violence and identifying the occurrence of major crimes using the models. In order to achieve this purpose, there were performed the statistical methods such as Generation of Time Series Model(C) for identifying the forecasting models of time series, Generation of Time Series Model(C) and Sequential Chart of Time Series(N) for identifying the accuracy of the forecasting models of time series on the monthly incidence of major crimes from 2002 to 2010 using IBM PASW(SPSS) 19.0. The following is the result of the study. First, murder, robbery, rape, theft and violence crime's forecasting models of time series are Simple Season, Winters Multiplicative, ARIMA(0,1,1)(0,1,1), ARIMA(1,1,0 )(0,1,1) and Simple Season. Second, it is possible to forecast the short-term's occurrence of major crimes such as murder, robbery, burglary, rape, violence using the forecasting models of time series. Based on the result of this study, we have to suggest various forecasting models of time series continuously, and have to concern the long-term forecasting models of time series which is based on the quarterly, yearly incidence of major crimes.

  • PDF

A Comparison of Autoregressive Integrated Moving Average and Artificial Neural Network for Time Series Prediction (자기회귀누적이동평균모형과 신경망모형을 이용한 시계열예측의 비교)

  • Yoon, YeoChang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1516-1519
    • /
    • 2011
  • 예측에 필요한 중요한 자료에는 비선형 자료와 시계열과 같은 선형 자료 등이 있다. 이들 자료는 그 함축적인 관계가 매우 복잡하여 전통적인 통계분석 도구로 식별하는데 어려움이 많다. 신경망 분석은 비모수적 문제나 비선형 곡선 적합능력의 우수성 때문에 현실세계에서의 고유한 복잡성을 다루는 많은 경제 응용 분야에서 널리 이용되고 있다. 신경망은 또한 경제 시계열자료의 예측분야에서도 여러 연구에서 훌륭한 도구로서 적용되고 있다. 전통적으로 우리나라에서 시계열자료의 예측은 선형 자료적 분석을 중심으로 하는 분석도구인 자기회귀누적이동평균(ARIMA)모형을 이용한 시계열분석이 일반적이다. 이 연구에서는 신경망과 ARIMA 모형을 이용하여 한국의 주가변동 자료 및 자동차등록 현황 자료등과 같은 시계열자료를 이용한 예측결과를 비교한다. 연구의 결과는 신경망을 이용한 예측 방법들이 ARIMA 예측 결과보다 통계적으로 작은 오차를 주는 보다 효율적인 방법임을 보여주고 있다.