본 연구는 옵션가격 및 거래량 자료를 이용하여 옵션시장의 가격발견 기능에 대해서 분석을 시도하였다. 이를 위해 먼저 옵션가격과 거래량 정보가 현물시장을 선행하는 현상에 대해서 분석해 보았다. 옵션가격은 실제 현물지수를 약 1시간 정도 선행하는 것으로 관찰되었다. 콜옵션 가격이 풋옵션에 비해서 상대적으로 옵션시장에서 높게 거래되는 경우 이는 현물주식시장에서의 주가상승을 예고하는 것으로 나타났다. 옵션 거래량 정보 역시 현물시장의 가격움직임을 예측하는데 유효한 것으로 관찰되었다. 콜옵션의 풋옵션 대비 상대적인 거래증가는 투자자의 낙관적인 장세전망을 반영해 일단 현물지수의 상승을 야기하는 것으로 나타났으나 이후 투자자의 풋옵션을 통한 헤지(hedge) 수요의 증가로 이어지는 것으로 조사되었다. 두 번째로 본 연구는 이러한 옵션시장의 가격발견 기능을 이용하여 매매전략을 수립하고 이를 통하여 투자이익을 극대화시킬 수 있는지에 대해서 살펴보았다. 콜옵션 가격(거래량)이 풋옵션 가격(거래량)에 비해 고평가(증가) 되었을 경우 이는 주가상승을 미리 예고하고 있는 신호로 받아들어져 주식을 매입하고 반대로 콜옵션 가격(거래량)이 풋옵션 가격(거래량)에 비해 저평가(감소) 되었다면 주가하락을 예측하기 때문에 주식을 매도함으로써 투자이익을 증대시킬 수 있을 것이다. 실증분석 결과는 우선 옵션 가격정보를 이용하여 현물시장에서 지수 바스켓 포트폴리오를 매매하려는 전략은 30분 내외의 단기 투자에는 유효하나 그 이상의 투자기간을 가지는 경우에는 예상과는 다른 결과를 초래하였다. 반면 옵션시장에서의 콜옵션과 풋옵션의 상대적인 거래량 정보는 현물주식시장의 움직임을 예측하는데 옵션 가격정보에 비해서 보다 효과적인 것으로 판단되었다. 조사한 모든 일중 및 1일(overnight) 투자수익률에서 옵션 거래량의 상대적 비율에 의거한 투자전략은 통계적으로 유의한 투자수익률의 차이를 가져왔다.
In this paper, we investigated the major 8 companies of Korean stock market, and carried out the goodness of fit and independence tests. We found out the distributions of absolute returns are closed to compressed exponential distribution. The parameters are dominant that 1 < ${\beta}$ < 2, followed by ${\beta}=1$(exponential distribution) and ${\beta}=2$(normal distribution). Meanwhile, we assured that most of the absolute returns for major 8 companies have relevance to each other by chi-square independence test.
선물시장이 개설된 이후 최근까지 약 2년동안 거래된 주가지수선물 8개의 최근월물에 대한 실제가격과 이론가격과의 괴리율을 분석한 결과 한개의 결제월물을 제외한 1개의 최근월물의 선물가격이 평균적으로 이론가보다 낮게 형성되어 주가지수선물시장이 개설된 이후 대부분의 기간동안 선물가격의 저평가상태가 지속되고 있는 것으로 나타났으며, 선물시장이 양적으로 성장한 97년 10월부터 괴리율의 편차가 더 심화되는 경향도 발견되었다. 가격괴리현상을 이용한 차익거래로 실제 수익을 올릴 수 있었는가에 대한 점증에서는 거래비용에서 유리한 위치에 있는 증권회사의 경우 분석대상 총거래일수 544일중에서 차익거래가 가능했던 거래일은 301일이었고, 거래비용측면에서 상대적으로 불리한 일반투자자의 경우에도 총 190일이나 차익거래가 가능했던 것으로 분석되었다. 이처럼 거래비용을 고려하고도 차익거래로 이익을 실현할 수 있는 기회가 즉시에 소멸되지 않고 상당기간동안 지속되는 것으로 나타났으며, 이는 기관투자가의 선물에 대한 인식 부족과 증권회사의 공매도 제약 둥과 같은 제도적 요인, 그리고 차익거래 수익의 불확실성 등에 따라 차익거래가 활발하게 이루어지지 못한데서 기인한 것으로 보인다. 가격괴리현상과 선물만기일까지의 잔존기간과의 관계는 유의적이어서, 선물만기일까지 잔존기간이 길수록 괴리율이 더 크고 만기일에 접근함에 따라 괴리율은 감소하였다.
토지문제(土地問題)의 심각성에 대한 사회적(社會的) 합의(合意)에도 불구하고 정부의 개입으로 시정되어야 할 구체적인 정책목표(政策目標)가 무엇인가에 대한 검토(檢討)는 부족한 설정이며, 이를 위해 지가상승(地價上昇)의 원인과 결과에 대한 실증분석(實證分析)을 시도한 예도 찾아보기 힘들다. 본고는 지가상승률(地價上昇率)과 일단의 거시경제변수(巨視經濟變數) 변화율(變化率) 사이에 Granger 개념의 인과관계(因果關係)가 존재하는가를 검증하고 그 현실적인 의미를 살펴보고 있다. 지가상승추세(地價上昇趨勢)를 변화시킬 수 있는 거시변수(巨視變數)는 통화량(通貨量), 민간건설생산(民間建設生産), 주가지수(株價指數)의 변화 등이며, 지가상승이 영향을 미치는 변수(變數)들은 주가지수(株價指數), 실질생산(實質生産) 및 민간건설생산(民間建設生産)의 변화(變化), 사채이자율(私債利子率)로 나타났다. 여기서 포착된 경험적 증거들은 인과관계(因果關係)의 작동경로를 설명하는 이론과 결합되어 발전되어야 할 것이나 우리의 분석결과로부터도 몇가지 정책적(政策的) 시사점(示唆點)을 끌어 낼 수 있다. 무엇보다도, 지가상승(地價上昇)을 거시경제현상(巨視經濟現像)으로 파악하는 것이 필요하며, 거시경제환경이 불안정한 경우 토지조세(土地租稅)와 같은 미시적(微視的) 정책수단(政策手段)이 지가안정 등의 정책목표(政策目標)를 달성하는 데는 뚜렷한 한계가 있다는 것이다. 지가상승(地價上昇)이 물가상승(物價上昇)을 가속화한다는 것도 중요한 점인데 통화긴축(通貨緊縮)과 같은 정책수단이 물가(物價)와 지가(地價)를 모두 안정시킬 수 있다는 점은 다행한 일이다. 또한, 건설생산액(建設生産額) 변화와 지가상승(地價上昇)간의 관계는 적극적인 개발투자(開發投資)가 장기적인 지가안정(地價安定)에도 도움을 준다는 쪽이므로 사회간접자본(社會間接資本)의 확충(擴充), 민간건설(民間建設)의 확대(擴大)가 지속적으로 이루어지도록 해야 할 것이다.
The event of change in KOSPI 200 Index composition is one of the main subjects for the test of EMH. According to EMH, when a certain event is not related with firm's fundamental value, stock price should not change after the announcement of news. This hypothesis leads us to the conclusion of horizontal demand curve of stock. This logic was questioned by Shleifer(1986) and argued that downward sloping demand curve hypothesis was supported. But Harris and Gruel(1986) found a different empirical evidence that price reversal occurs in the long run, which is called price pressure hypothesis. They argued that short term price effect by large block trading (price pressure) is offset in the long run because these event is unrelated to fundamental value. Therefor, they argued that EMH can not be rejected in the long run. Until now, there are two empirical studies with Korean market data in this area. Using a data with same time period of $1996{\sim}1999$, Kweon and Park(2000) and Ahn and Park(2005) showed that stock price or beta is not significantly affected by change in index composition. This study retested this event expanding sample period from 1996 to 2006, and analyzed why this event was considered an uninformative events in the preceding studies. We analyzed a market impact by separating samples according to firm size and market condition. In case of newly enlisted firm, we found the evidence supporting price pressure hypothesis on average. However, we found the long run price effect in the sample of large firms under bearish markets. At the same time, we know that the number of samples under the category of large firms under bearish markets is relatively small, which drives the same result of supporting the hypothesis that change in index composition is a non-informative event on average. Also, the long run price effect of large size firms under bearish markets was supported by the analyses using trading volumes. On the other hand, in case of delisting from the index, we found the long run price effect but that was not supported by trading volume analyses.
본 연구는 투자자 집단에 따라 그 매매에 있어서 주가와의 관련성을 분석하고자 하였다. 투자자 집단의 매매 성향은 월별 순매매율로 측정하였으며 주가의 대용변수는 한국종합주가지수(KOSPI)의 월별 수익률로서 분석에 사용된 기간은 1992년 1월부터 1999년 12월까지이다. 분석을 위한 방법론으로 상관분석과 회귀분석을 이용하였다. 상관분석은 스피어만 순위상관분석을 이용하여 KOSPI와 각 투자자 집단의 순매매 비중의 상관계수를 도출하였으며 그 결과 KOSPI와 개인투자자의 순매매와는 음의 유의적 상관관계를, KOSPI와 외국인 투자자의 순매매율과는 양(+)의 유의적 상관관계를 알 수 있었다. 그러나 기관투자자의 경우 기관투자자 전체 범주로 볼 때 유의적 상관관계가 없었으나 세분화된 기관투자자 일부는 유의적 상관관계를 보였다. 또한 본 연구는 KOSPI와 각 투자자 집단의 매매에 대한 인과관계를 추론한 바 외국인 투자자의 매매는 KOSPI에 영향을 주며 개인투자자의 매매는 오히려 KOSPI에 영향을 받는 것으로 보였다. 그러나 기관투자자의 경우 세부기관마다 그 매매의 성격을 달리하는 것으로 보였다. 이러한 분석결과를 바탕으로 회귀분석을 실시하였으며 그 분석결과 외국인 투자자와 기관투자가 가운데 증권사와 투신사의 경우, 순매수가 늘어날수록 주가는 상승하고 순매도가 늘어날수록 주가는 하락하는 것을 확인할 수 있었으며 반면 개인투자자의 매매는 KOSPI 주가에 따라 영향을 받는 것으로 나타났다. 즉 주가가 상승할수록 매도에 치중하고 주가가 하락할수록 매수에 치중하는 것으로 분석되었다. 기관투자자 가운데 보험사의 매매 역시 주가에 영향을 받는 것으로 나타났다. 본 연구의 성과로는 특정 투자자 집단이 주가의 움직임에 따라 매매를 하는 수동적 전략의 의미보다는 적극적으로 주가를 움직이는 주체로서 외국인투자자와 일부 기관투자자의 존재를 확인할 수 있었다는 점이며, 주가 움직임에 따른 개인투자자와 일부 기관 투자자의 수동적 매매 스타일과 기관투자자 사이의 투자스타일의 이질성을 통계적으로 확인할 수 있었다는 데에 있다.
Predictions on stock prices have been a hot issue in stock market as people get more interested in stock investments. Assuming that the stock price is moving by a trend in a specific pattern, we believe that a model can be derived from past data to describe the change of the price. The best model can help predict the future stock price. In this paper, our model derivation is based on automata over temporal data to which the model is explicable. We use Bayesian Information Criterion(BIC) to determine the best number of states of the model. We confirm the validity of Bayesian Information Criterion and apply it to building models over stock price indices. The model derived for predicting daily stock price are compared with real price. The comparisons show the predictions have been found to be successful over the data sets we chose.
본 논문에서는 재정가격결정모형(裁定價格決定模型)(Arbitrage Pricing Model)을 기초로 우리나라 주식시장에 영향을 주는 거시경제변수가 무엇인가를 찾고자 하였다. 방법론면에서는 과거변수(過去變數)(lagged variables)에 의해서만 기대치를 형성시키는 AIRMA(Autoregressike Integrated with Moving Average) 방법을 이용하기보다는 마코프속성(屬性)(Markov Property)을 갖는 상태공간모형(狀態空間模型) (State Space Model)을 이용하여 보다 합리적인 거시경제 요인의 이노베이션을 하였다. 또한 단순한 요인분석(要因分析)(factor analysis)에 의한 요인추출은 요인의 표본의존성(標本依存性)(Sample dependency)이 심하므로 그룹간 요인분석(inter-battery factor analysis)을 행하여 추정(推定)된 요인(要因)(요인값 : factor score)과 요인수를 결정하여 관련 거시경제변수를 선택한다. 그룹간 요인분석을 위한 그룹을 형성할 때 그룹내에서는 동질성을 그룹간에는 이질성을 최대한 살리는 것이 필요한데, 이를 위해 군집분석(群集分析)(Cluster Analysis)을 사용한 것이 특징이다. 결론적으로 우리나라 주식시장에 영향을 미치는 거시경제요인(巨視經濟要因)으로 단위노동비율, 제조업제품재고지수, 채권프리미엄, 수출물가지수, 정부부문 통화공급, 회사채수익률, 종합주가지수 등 7가지가 있는 것으로 분석되고 있다.
As the use of trading systems increases recently, many researchers are interested in developing intelligent trading systems using artificial intelligence techniques. However, most prior studies on trading systems have common limitations. First, they just adopted several technical indicators based on stock indices as independent variables although there are a variety of variables that can be used as independent variables for predicting the market. In addition, most of them focus on developing a model that predicts the direction of the stock market indices rather than one that can generate trading signals for maximizing returns. Thus, in this study, we propose a novel intelligent trading system that mitigates these limitations. It is designed to use both the technical indicators and the other non-price variables on the market. Also, it adopts 'two-threshold mechanism' so that it can transform the outcome of the stock market prediction model based on support vector machines to the trading decision signals like buy, sell or hold. To validate the usefulness of the proposed system, we applied it to the real world data-the KOSPI200 index from May 2004 to December 2009. As a result, we found that the proposed system outperformed other comparative models from the perspective of 'rate of return'.
The Journal of the Convergence on Culture Technology
/
v.10
no.4
/
pp.711-719
/
2024
This study examined the policy of opening up the Chinese A-share market and its performance in four aspects: institutional investors system, cross-trading system with overseas stock markets, inclusion of A-shares into global indices, and establishment of a new board. Then, the impact of these policies on the Stock Index was empirically analyzed, and it was confirmed that institutional investors system such as QFII and RQFII, cross-trading system with overseas stock markets such as Shanghai-Hong Kong Stock Connect and Shenzhen-Hong Kong Stock Connect, inclusion of A-shares into global indices such as the MSCI EM index and FTSE Russell index, and the establishment of a new board of the Science Innovation Board all had statistically significant positive impacts on the stock index. Based on the results of these analysis, we conclude that China should further expand its stock market opening to the outside world, that mutual efforts are needed to alleviate political conflicts and improve understanding, and that easing industry regulations, including real estate, will help China's economic recovery and foreigners' investment in the A-share market.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.