• Title/Summary/Keyword: 좌수

Search Result 68, Processing Time 0.022 seconds

Present State of the Dangsan Forest at 'Jwasuyeongseongji' in Busan and the Perspectives on It's Authenticity Restoration as a Historic Remain (부산 '좌수영성지(左水營城址)'의 진정성(authenticity) 회복방안 고찰)

  • Choi, Jai Ung;Kim, Dong Yeob
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.1
    • /
    • pp.138-161
    • /
    • 2011
  • The 'Jwasuyeongseongji' (Site of naval wall-fortress in Suyeong) in Busan is the subject of this study. It has been desturbed mostly, and is named 'Suyeong historic site'. One of the important aspects of 'Jwasuyeongseongji' is that it was a historic place confronting with the Japanese Invasion of Chosun in 1592. This was the place where the Japanese Invasion of Chosun broke out and a number of people were slaughtered by the Japanese invaders. Now the place is converted to a playground. Although 'Jwasuyeongseongji' is the place of historic interest, the forest area is separated by paths and sidewalks. Further, there are sports facilities and relaxing people. Examples of advanced countries show that the abuse like Jwaisuyeongseongji is thoroughly prohibited. Although the Dangsan forest of jwasuyeongseongji remains in the megalopolis of Busan, it has been damaged and abused in spite of being a historic site. Nevertheless, Jwasuyeongseongji is an invaluable traditional cultural heritage. The objective of this study was to search for solutions of authenticity restoration for the remains of Dangsan forest at Jwasuyeongseongji in Busan. The Dangsan forest at Jwasuyeongseongji is a forest of Pinus thunbergii in an area of $130{\times}230m$. Jwasuyeongseongji is currently named Suyeong historic park, and is registered as monuments No. 8 by Suyeong-gu, Busan. The two Dangsan trees at Jwasuyeongseongji are registered as natural monuments No. 270 and No. 311. The complex management system needs to be designated as 'Dangsan forest of Jwasuyeongseongji in Busan', and managed as a natural monument or national historic site. Dangsan forest has a meaning of divine place. Therefore, the artificial facilities need to be removed from Dangsan forest so that the original features are restored with the spirit of Jwasuyeongseongji. Also, the administration needs to be transfered from Suyeong-gu, Busan to the Cultural Heritage Administration.

A Study on the Process of Transformation and Revitalization in the wall of City center -Focused on the Kyungsang Jwasuyoung and Dongrae Eupsung- (도심 성곽지역의 변화과정과 재활성화를 위한 기초연구 - 경상좌수영성지(慶尙左水營城址)와 동래읍성지(東萊邑城址)를 대상으로 -)

  • Kim, Min-Jung;Kim, Jun;Yoo, Jae-Woo
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.145-148
    • /
    • 2008
  • The objective of this study is to analyze and to shed light on the evolutions of factors with the wall structure and their relations with production mechanisms of urban form. this study based on followings; literature review of existing study and setting up of examination factors, analytical review of each wall's current situation and problems, analytical review of each wall's urban regeneration. The significance of this study is in that the study use a contemporary map showing the actual spatial arrangement in the period, instead of using the historical map. We understood the planning methods to interpret the site's historical urban trace and memory. Based on the results, this study presented the solution for the placeless and potential energy.

  • PDF

Movement History of Faults Considered from the Geometric and Kinematic Characteristics of Fracture System in Gilan-cheongsong Area, Gyeongsang Basin, Korea (경상분지 길안-청송 지역에서 단열계의 기하학적.운동학적 특성으로부터 고찰된 단층운동사)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • The Gilan-Cheongsong area, which is in contact with Yeongyang and Uiseong Blocks of Gyeongsang Basin, Korea, consists of Precambrian metamorphic rocks, Triassic Cheongsong granite, Cretaceous sedimentary rocks(Iljik, Hupyeongdong, Jeomgok Formations), and Cretaceous igneous rocks(andesite, quartz porphyry, felsite). In this area are developed faults trending in (W)NW, NNW, ENE, NS, (N)NE directions which are representative in the Gyeongsang Basin. We analyzed the geometric and kinematic characteristics of fracture systems to inquire into movement history and sense of these faults in this area. This study suggests that these faults were mainly strike-slip movement. The orientations of fracture sets show ENE, NNW, (W)NW, (N)NE, NS in descending order of frequency. Their prolongation presents (W)NW, NNW, ENE, (N)NE, NS in descending order of predominance, and also agrees with that of faults in this area. The development sequence and movement sense of fracture sets are summarized as follows; (1) (W)NW: dextral shearing $\rightarrow$ (2) (W)NW and NNW: conjugate shearing(the former: dextral, the latter: sinistral) $\rightarrow$ (3) NNW: dextral shearing $\rightarrow$ (4) (W)NW: sinistral shearing $\rightarrow$ (5) ENE: dextral shearing $\rightarrow$ (6) ENE and NS: conjugate shearing(the former: sinistral, the latter: dextral) $\rightarrow$ (7) (N)NE: sinistral shearing, and this result is closely associated with the development sequence and movement sense of faults developed in this area.

Geometrical Interpretation on the Development Sequence and the Movement Sense of Fractures in the Cheongsong Granite, Gilan-myeon Area, Uiseong Block of Gyeongsang Basin, Korea (경상분지 의성지괴 길안면지역에서 청송화강암의 단열 발달사 및 운동성에 대한 기하학적 해석)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.4 s.46
    • /
    • pp.180-193
    • /
    • 2006
  • The Gilan area in the central-northern part of Uiseong Block of Cretaceous Gyeongsang Basin is composed of Precambrian metamorphic rocks, Triassic Cheongsong granite, Early Cretaceous Hayans Group, and Late Cretaceous-Paleocene igneous rocks. In this area, the faults of various directions are developed: Oksan fault of $NS{\sim}NNW$ trend, Gilan fault of NW trend, Hwanghaksan fault of WNW trend, and Imbongsan fault of EW trend. Several fracture sets with various geometric indicators, which determine their relative timing (sequence and coexistence relationships) and shear sense, we well observed in the Cheongsong granite, the basement of Gyeongsang Basin. The aim of this study is to determine the development sequence of extension fractures and the movement sense of shear fractures in the Gitan area on the basis of detailed analysis of their geometric indicators (connection, termination, intersection patterns, and cross-cutting relations). This study suggests that the fracture system of the Gilan area was formed at least through seven different fracturing events, named as Pre-Dn to Dn +5 phases. The orientations of fracture sets show (W) NW, NNW, NNE, EW, NE in descending order of frequency. The orientation and frequency patterns are concordant with those of faults around and in the Gilan area on a geological map scale. The development sequence and movement sense of fracture sets are summarized as follows. (1) Pre-Dn phase: extension fracturing event of $NS{\sim}NNW$ and/or $WNW{\sim}ENE$ trend. The joint sets of $NS{\sim}NNW$ trend and of $WNW{\sim}ENE$ trend underwent the reactivation histories of sinistral ${\rightarrow}$dextral${\rightarrow}$sinistral shearing and of (dextral${\rightarrow}$) sinistral shearing with the change of stress field afterward, respectively. (2) Dn phase: that of NW trend. The joint set experienced the reactivations of sinistral${\rightarrow}$dextral shearing. (3) Dn + 1 phase: that of $NNE{\sim}NE$ trend. The joint set was reactivated as a sinistral shear fracture afterward. (4) Dn +2 phase: that of $ENE{\sim}EW$ trend. (5) Dn +3 phase: that of $WNW{\sim}NW$ trend. (6) Dn+4 phase: that of NNW trend. The joint set underwent a dextral shearing after this. (7) The last Dn +5 phase: that of NNE trend.

Geometric and Kinematic Characteristics of Fracture System in the Sancheong Anorthosite Complex, Korea (산청 회장암복합체 내 발달하는 단열계의 기하학적·운동학적 특성)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.389-400
    • /
    • 2016
  • The study area, which is located in the southeastern part of the Jirisan province of the Yeongnam massif, Korea, consists mainly of the Precambrian Sancheong anorthosite complex and the Jirisan metamorphic rock complex, the Mesozoic granitoids which intruded them. Several fracture sets with various geometric indicators, which determine their relative timing and shear sense, are well observed in the Sancheong anorthosite complex. The aim of this study is to determine the development sequence of extension fractures, the movement sense and development sequence of shear fractures in the Sancheong anorthosite complex on the basis of detailed analysis of their geometric indicators. This study suggests fracture system of the Sancheong anorthosite complex was formed at least through five different fracturing events, named as Dn to Post-Dn+3 phases. (1) Dn phase: extension fracturing event of NNW trend. The fracture set experienced the reactivations of dextral ${\rightarrow}$ sinistral shearing with the change of stress field afterward. (2) Dn+1 phase: extension fracturing event of (N)NE trend. The fracture set experienced the reactivations of sinistral ${\rightarrow}$ sinistral ${\rightarrow}$ dextral. (3) Dn+2 phase: extension fracturing event of NW trend. The fracture set experienced the activated of dextral shearing. (4) Dn+3 phase: extension fracturing event of N-S trend. (5) Post-Dn+3 phase: extension fracturing event of (E)NE trend. Dn deformation formed during the early Songnim orogeny. Dn+1 deformation formed during the late Songnim orogeny. Dn+2 deformation formed during the Daebo orogeny. Dn+3 deformation formed during the Bulguksa orogeny.

Anisotropy of Magnetic Susceptibility (AMS) of Granitic Rocks in the Eastern Region of the Yangsan Fault (양산단층 동편 화강암질암의 대자율 이방성(AMS))

  • Cho, Hyeong-Seong;Son, Moon;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.171-189
    • /
    • 2007
  • A study of anisotropy of magnetic susceptibility (AMS) was undertaken on Cretaceous granitic, volcanic and sedimentary rocks in the eastern region of the Yangsan fault, southeast Korea. A total of 542 independently oriented core samples collected form 77 sites were studied. The main magnetic mineral in granitic rocks is magnetite according to the magnitude of bulk susceptibility, high-temperature susceptibility variation and isothermal remanent magnetization. Both of magnetic lineation and foliation with NE-SW trends are revealed in the granitic rocks, while volcanic rocks show scattered directions and sedimentary rocks show only load foliation parallel to the bedding planes. The following evidences read to the conclusion that both magnetic fabrics in the granitic rocks have been obtained by a tectonic stress before full solidification of the magma: (i) A fully hardened granitic rocks would get hardly any fabric, (ii) Difference of the magnetic fabric trends with those of the geological structures in the granitic rocks themselves formed by brittle deformation after solidification (e.g. patterns of small-faults and joints), (iii) Kinking of biotite and undulose extinction in quartz observed under the polarizing microscope, (iv) Discordance of magnetic fabrics in the granitic rocks with those in the surrounding rocks. The NE-SW trend of the magnetic foliations suggests a NW-SE compressive stress of nearly contemporaneous with the emplacement of the granitic rocks. The compression should have caused a sinistral strike-slip movement of the Yangsan Fault considering the trend of the latter. As the age of the granitic rocks in the study area is reported to be around $60\sim70$ Ma, it is concluded that the Yangsan fault did the sinistral strike-slip movement during this time (L. Cretaceous Maastrichtian - Cenozoic Paleocene).

전주전단대 화강암류의 SHRIMP U-Pb 저어콘 연령측정: 호남전단대의 운동시기에 대한 고찰

  • 이승렬;이병주;조등룡;기원서;고희재;김복철;송교영;황재하;최범영
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.55-55
    • /
    • 2003
  • 호남전단대는 옥천대 남서부지역에 북동 내지 북북동 방향으로 발달하는 일련의 우수향 연성전단대로 한반도를 포함하는 동북아 지역의 중생대 부가작용과 관련하여 매우 중요한 조구조적 요소이며, 특히 북중국 대륙과 남중국 대륙이 유라시아 대륙에 부가되는 과정과 관련하여 동북아 지역의 중생대 지체구조 발달사를 설정하는데 매우 중요하게 생각되고 있다. 그러나 이러한 조구조적 중요성에도 불구하고 호남전단대의 정확한 운동 시기는 아직 밝혀지지 않고 있다. 이번 연구는 전주전단대가 지나가는 김제 금산사 지역과 무안 지역에 분포하는 화강암류를 대상으로 SHRIMP U-Pb 저어콘 연대 측정을 실시하여 전단운동시기를 밝혔다. 금산사 지역은 엽리상 각섬석-흑운모 화강섬록암이 흑운모 화강암에 포획된 명확한 지질학적 증거를 보이고 있는 곳으로 화강섬록암의 U-Pb 저어콘 연대는 172.7 $\pm$ 1.4 Ma이며 화강암의 연대는 169.6 $\pm$ 1.8 Ma과 167.5 $\pm$ 2.4 Ma로 구해졌다. 따라서 전주전단대의 전단운동은 약 173 - 170 Ma 기간에 일어났다. 특히 화강암 내에 포획된 화강섬록암 내에는 전반적인 우수향 전단운동 후기에 관입한 다수의 석영질 맥이 좌수향의 전단운동을 받은 증거가 관찰되는데 이러한 사실은 우수향의 전단운동 이후 화강암의 관입 이전에 좌수향의 전단 운동이 있었음을 지시한다. 무안 지역은 전주전단대의 끝 부분에 해당하는 곳으로 각섬석화강섬록암과 이를 관입한 각섬석화강암이 모두 우수향의 전단운동을 받았다. 화강섬록암의 U-Pb 저어콘 연대는 176.3 $\pm$ 1.7 Ma이며 화강암의 연대는 165.8 $\pm$ 2.0 Ma로 구해졌으며, 따라서 최종 우수향 전단운동의 시기는 166 Ma 이후로 생각된다. 무안 지역에 분포하는 화강섬록암과 화강암의 관입시기는 금산사 지역의 화강섬록암과 화강암과 각각 조화적이다. 호남전단대의 운동 시기를 밝히기 위해 전주전단대에 해당하는 금산사 지역과 무안 지역에 분포하는 화강암류에 대한 U-Pb 저어콘 연대 측정을 실시한 결과 호남전단대의 특징적인 우수향 전단운동은 적어도 2회에 걸쳐 일어났음을 알 수 있다. 즉 첫 번째 광역적인 전단운동은 약 173 - 170 Ma 시기에 일어났으며, 두 번째 전단운동은 166 Ma 이후에 일어났음을 알 수 있다. 한편 전기의 우수향 전단운동은 후기 화강암 관입 이전에 좌수향 전단 운동에 의해 부분적으로 재활성 되었으며, 후기 화강암의 관입 이후에 재차 우수향 전단운동으로 활성화 되었음을 알 수 있다. 이상의 결과를 종합하면 호남전단대는 쥬라기 중기에 발생한 광역적인 우수향의 연성전단운동이나, 운동 특성은 연속적이기 보다는 단속적으로 일어난 것으로 생각된다.

  • PDF