• Title/Summary/Keyword: 좌굴후강도

Search Result 76, Processing Time 0.025 seconds

Nonlinear Dynamic Behavior of a Cold-Formed Steel Shear Panel by Shaketable Tests (진동대 실험을 통한 조립식 스틸 전단 패널의 비선형 동적 거동)

  • Kim, Tae-Wan;Lee, Moon-Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.31-39
    • /
    • 2005
  • The purpose of this study was to investigate the nonlinear behavior of a cold-formed steel (CFS) shear panel, which was composed of built-up columns and tension-only diagonal straps for bracing, when excited by earthquake motions. For the purpose, shaketable tests of a full-scale two-story cold-formed steel (CFS) shear panel were conducted. in the shear panel, the diagonal strap is a major lateral force resisting system, which is a very ductile member, and the columns, which are gravity resisting members, are fabricated by wooing studs, which can't develop their full flexural strength because they may buckle locally. The test results showed that the straps dissipate most of energy of the shear panel in a tension-only and pinched way and the columns dissipate it relatively smaller than the straps but they still contribute to overall dissipation. As a result of this study, investigating real nonlinear behavior of a structure in earthquakes is a very important process by shaketable tests even though it is simple.

A Study on the Ultimate Strength of a Ship's Plate According to Initial Deflection Pattern in used Arc-Length Method (호장증분법에 의한 선체판의 초기처짐형상에 따른 최종강도에 관한 연구)

  • 고재용;박주신;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.21-26
    • /
    • 2003
  • Develop and need design application of carbon sex design concept that consider plasticity in elastic design concept until now. To Place that is representative construction of hull in this research rain deflection pattern analysis technique and grandeur increment method such as general load type increment law and displacement type increment law and Newton-Raphson method increment body law to use jointly compare. Specialty. through analysis by initial deflection pattern. examined closely carbon set conduct of place by initial deflection pattern. Applied thin plate structure which receive compressive load used ANSYS that analysis method is mediocrity finite element analysis program to save complicated conduct that effect that conduct after initial buckling and conduct after secondary buckling get in the whole construction is very big and such and grandeur increment law presumes complicated rain fan shape conduct in bifurcation point specially.

  • PDF

Seismic Design of Columns in Inverted V-braced Steel Frames Considering Brace Buckling (가새좌굴을 고려한 역 V형 가새골조의 기둥부재 내진설계법)

  • Cho, Chun-Hee;Kim, Jung-Jae;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • According to the capacity design concept which forms the basis of the current steel seismic codes, the braces in concentrically braced frames (CBFs) should dissipate seismic energy through cyclic tension yielding and cyclic compression buckling while the beams and the columns should remain elastic. Brace buckling in inverted V-braced frames induces unbalanced vertical forces which, in turn, impose the additional beam moments and column axial forces. However, due to difficulty in predicting the location of buckling stories, the most conservative approach implied in the design code is to estimate the column axial forces by adding all the unbalanced vertical forces in the upper stories. One alternative approach, less conservative and recommended by the current code, is to estimate the column axial forces based on the amplified seismic load expected at the mechanism-level response. Both are either too conservative or lacking technical foundation. In this paper, three combination rules for a rational estimation of the column axial forces were proposed. The idea central to the three methods is to detect the stories of high buckling potential based on pushover analysis and dynamic behavior. The unbalanced vertical forces in the stories detected as high buckling potential are summed in a linear manner while those in other stories are combined by following the SRSS(square root of sum of squares) rule. The accuracy and design advantage of the three methods were validated by comparing extensive inelastic dynamic analysis results. The mode-shape based method(MSBM), which is both simple and accurate, is recommended as the method of choice for practicing engineers among the three.

Design Improvement on Wind Turbine Blade of Medium Scale HAWT by Considering IEC 1400-1 Specification (IEC1400-1 규격을 고려한 중형 수평축 풍력발전용 회전날개의 설계개선 연구)

  • 공창덕;정석훈;장병섭;방조혁
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.29-37
    • /
    • 2000
  • Because the previous design procedure for the composite wind turbine blade structure using trial and error method takes long time, a improved design procedure by using the program based on classical laminate theory was proposed to reduce the inefficient element. According to the improved design procedure, limitation of strains, stresses and displacements specified by international standard specification IEC1400-1 for the composite wind turbine blade were applied to sizing the structural configuration by using the rule of mixture and the principal stress design technique with a simplified turbine blade. Structural safety for strength and buckling stability was confirmed by the developed analysis program based on the laminate theory to minimize the design procedure. After modifying the preliminary design result with additional structural components such as skin, foam sandwich and mounting joints, stresses, strains, displacements, natural frequency, buckling load and fatigue life were analyzed by the finite element method. Finally these results were confirmed by comparing with IEC1400-1 specification.

  • PDF

Anti-Seismic Performance Evaluation of Circular Pier By Interval Reinforcement (보강간격에 따른 원형 기둥부재의 내진 성능 평가)

  • Jang, Il-Young;Kim, Seong-Kyum;Park, Jun-Young;Yang, Jae-Yeol
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.165-165
    • /
    • 2011
  • 내진 설계규정이 적용되기 이전에 시공되어 사용 중인 교량의 경우 지진 발생시 교각의 파괴 또는 구조적 피해는 교량 전체 시스템의 붕괴를 초래하므로 지진하중에 대하여 피해를 최소화해야 한다. 이를 위해 내진설계규정이 적용되기 이전의 교량 또는 지진취약지역으로 분류된 곳의 교량, 사회적 중요도가 높은 교량에 대해 교각의 내진성능보강을 실시하고 있다. 2007년 말 국토해양부가 관리하고 있는 11,940개 교량 중 지진 발생시 피해가 우려되는 1,342개(일반국도 682개, 고속국도 600개) 교량에 대해 2006년부터 내진보강이 착수되었고 2009년에는 확대 추진하여 일반국도 80개교, 고속국도 100개교에 대한 보강을 실시하였다. 이와 같이 확대 추진되고 있는 정책에 반해, 내진보강 기술 및 제품이 부족하고 새로운 내진보강재 개발이 불가피해지고 있는 것이 현실이다. 소성영역에서의 횡방향 철근은 지진 시 종방향 철근의 좌굴과 콘크리트의 압축강도저하를 방지하며, 전단보강철근으로도 중요한 역할을 하여 교각의 전단강도를 증가시킨다. 그러나 이러한 횡방향 철근은 초기 설계에 의한 시공이 종료된 후 기존의 성능을 증가시키기 위하여 철근량을 증가하거나 단면의 변화를 주기에는 매우 어려운 일이다. 따라서 내진성능을 위한 단면력 증가를 위하여 다양한 재료의 보강재와 형식이 사용되고 있다. 본 연구에서는 원형교각 모델의 구조해석을 이용해 내진성능평가를 선행한 후 실험체를 제작, Helical Bar를 보강하여 준정적 실험을 통해 내진보강성능을 평가하였다. 압축설계강도 $f_{ck}=240kgf/cm^2$를 기준으로 교량등급 2등교인 일반적인 도로교의 1/4축소모형을 설계, 기초부는 $1,200{\times}600{\times}600$ (mm)으로 철근과 콘크리트로 구성하였으며, 기둥부는 직경 400mm, 높이 1,250mm 크기의 철근콘크리트 원형 교각 실험체를 제작하였다. 제작된 실험체는 총 3개로, 분류는 무보강 일반 실험체, Helical Bar 직경에 따른 분류, 보강간격에 따른 분류로 나누어진다.

  • PDF

Centrifuge Tests on Compression Performance of Octagonal Concrete Filled Tube Column to be applied to Top-Down Construction Method (역타공법에 적용되는 팔각 콘크리트충전 강관의 압축성능을 위한 원심모형실험)

  • Kim, Dong-Kwan;Lee, Seung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.9-16
    • /
    • 2017
  • To improve concrete-filled tube (CFT) columns, an octagonal concrete-filled tube (OCFT) column was developed. Because the OCFT column requires a small boring diameter, the OCFT column is suitable for Top-Down construction method. In this study, the compression performance of OCFT column to be used as Top-Down pile foundation was verified using centrifuge equipment. Under 12 g centrifugal acceleration, the bearing capacities of the pile foundations of OCFT and H-shaped sections were tested. When the pile foundations were embedded in soil of full depth, 45 % of the design strength, which was assumed to be the construction load, was supported by the OCFT and H-shaped sections in the elastic states. When the pile foundations were embedded in soil of half depth, the buckling of the pile foundations was not investigated. After the loading test, the rock at the bottom of pile foundation, which had a strength of 3.5 MPa, was not damaged due to 45 % of the design strength.

Effects of PZ Strength on Cyclic Seismic Performance of RBS Steel Moment Connections (RBS 철골모멘트접합부의 내진성능에 대한 패널존 강도의 영향)

  • Lee, Cheol-Ho;Kim, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.149-158
    • /
    • 2006
  • The reduced beam section (RBS) steel moment connection has performed well in past numerous tests. However there still remain several design issues that should be further examined. One such issue on RBS connection performance is the panel zone strength. Although a significant amount of test data are available, a specific recommendation for a desirable range of panel zone strength versus beam strength has yet to be proposed. In this paper, the effects of panel zone strength on the cyclic performance of RBS connection are investigated based on the available test database from comprehensive independent testing programs. A criterion for a balanced panel zone strength that assures sufficient plastic rotation capacity while reducing the amount of beam buckling is proposed. Numerical studies to supplement the test results are then presented based on the validated finite element analysis. Satisfactory numerical simulation achieved in this study also indicates that numerical analysis based on quality finite element modeling can supplement or replace, at least in part, the costly full-scale cyclic testing of steel moment connections.

A Study on the Ultimate Strength of Tube-Gusset Connection Considering Eccentricity (편심이 고려된 강관-가셋트 접합부의 극한 내력)

  • Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.201-210
    • /
    • 2001
  • A numerical analysis and experimental study were performed to investigate the behavior and strength of tube-gusset connection subjected to axial and lateral forces. To investigate the behavior of the connections, experiment was conducted by applying three directional loads. Local buckling and local plastic bending deformation of the connection were observed from the test. Analytical results were compared with test results for the limited cases. Primary interests here are the effect of eccentricity on the strength of the connection. To suggest a formula for the strength of tube-gusset connection, lateral forces were replaced with equivalent wall moment and eccenrtric vertical component force of lateral force. Ultimate strength formula for the each force was proposed. Finally, nondimensionalized ultimate strength interaction relationships between the wall moment of tube($M_w$), vertical axial force($P_v$), and eccentric vertical component of lateral force($P_e$) were formulated through parametric study.

  • PDF

Structural Stability of Temporary Facility System using High-Strength Steel Pipes Based on Abnormal Behavior Parameters (이상거동 변수 기반 고강도 강관 가시설 시스템의 구조 안정성)

  • Lee, Jin-Woo;Noh, Myung-Hyun;Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This study defined abnormal behaviors such as bending deformations or buckling behaviors occurred in high strength steel pipe strut system, and carried out a full-scale bending test for different connection types. A parametric study was carried out to gain an insight about structural performances considering abnormal behavior effects in high strength steel pipe strut system. Five abnormal behaviors were considered as undesirable deflections of strut structures, which are basic load combination, excessive excavation situations, impact loading effects, additional overburden loads, load combinations, and strut lengths. Subsequent simulation results present various influences of parameters on structural performances of the strut system. Based on the results, we propose methods to prevent unusual behaviors of pipe-type strut structures made of high strength steels.

Seismic Retrofit of Existing RC Structure Using Hysteretic Dampers (이력댐퍼를 이용한 기존 RC구조물의 내진보강)

  • Choe, Seon-Yeong
    • Computational Structural Engineering
    • /
    • v.26 no.2
    • /
    • pp.37-42
    • /
    • 2013
  • 준공 후 상당한 시간이 지나 내진설계가 되지 않았거나 내진상세가 이루어지지 않은 건물의 부족한 내진성능을 보완하기 위한 방법의 하나로 좌굴이 제한된 가새형 댐퍼를 적용할 수 있다. 이 방법을 적용할 경우, 기존 내진보강법의 불확실성을 줄일 수 있었음에도 불구하고, 댐퍼의 설계과정이 복잡하여 실무에 적용하기 어려웠다. 그러나 본 원고에서는 강성과 강도개념을 적용한 댐퍼의 설계법을 적용함으로써, 실무에서 쉽게 적용할 수 있도록 하였다. 준공된 지 16년이 지난 비틀림 비정형 건물에 대한 내진성능을 평가한 후, 가새형 댐퍼로 보강한 결과는 다음과 같다. (1) 일방향해석결과 나타난 골조별 하중-지붕변위의 관계를 이용하여, 연약골조의 강성을 강한 골조의 강성과 일치시키고, 이 강성비로부터 댐퍼가 부담하는 최적의 내력비율을 정하여 내진보강을 수행한 결과, 가새를 설치한 방향으로는 가새형댐퍼가 비틀림 방지와 연성증대효과를 구조물에 부여하여 성능이 획기적으로 증가하였다. 또한, 그 가새의 직각방향 하중에 대해서도 가새를 설치함으로써 비틀림 강성이 증가하고, 가새와 코어벽체가 인장과 압축으로 횡력에 저항하여 횡저항 성능이 증가하였다. (2) 내진성능이 부족한 비틀림 비정형 건물의 내진성능을 증진시키기 위해 가새형 댐퍼를 적용함에 있어, 댐퍼의 강성을 이용하여 구조체의 비틀림 거동을 최소화하고, 연성을 증진시키는 방법을 체택할 경우, 실무자들이 보다 쉽게 적용할 수 있으면서 그 효과도 상당히 클 것으로 기대된다.