• Title/Summary/Keyword: 종합생물방제

Search Result 49, Processing Time 0.021 seconds

Trend and Perspective of Weed Control Techniques in Organic Farming (유기농 재배에서 잡초방제기술의 동향 및 전망)

  • Ock, Hwan-Suck;Pyon, Jong-Yeong
    • Korean Journal of Weed Science
    • /
    • v.31 no.1
    • /
    • pp.8-23
    • /
    • 2011
  • Weeds are one of the major constraints to crop production in organic farming systems. This paper reviews major results and techniques achieved with physical, cultural, and biological weed control and their perspectives in organic agriculture. Physical methods includes mechanical, thermal, lighting, electrocution, pneumatic, autonomous robot weeding control techniques. Cultural weed control methods includes mulching, tillage, crop rotation, cover crops and crop competition. Physical and cultural weed control techniques are especially important in organic farming crops where other weed control options are limited or not available without use of herbicides. Biological weed control includes mycoherbicides, innundative biological control, broad-spectrum biological control and allelopathy. Successful weed management in organic farming requires well managed integrated systems of mechanical control using newly developed machines, cultural control and biological control methods. Weed management decision-aid models may also needed to develop to provide greater assurance of achieving profitability and appropriate long-term weed management in organic farming in the future.

Efficacy of an Integrated Biological Control of an Egg Parasitoid, Trichogramma evanescens Westwood, and Microbial Insecticide Against the Oriental Tobacco Budworm, Helicoverpa assulta (Guenée) Infesting Hot Pepper (고추를 가해하는 담배나방[Helicoverpa assulta (Guenée)]의 효과적 방제를 위한 쌀좀알벌(Trichogramma evanescens Westwood)과 미생물제제의 종합생물방제 효과)

  • Kim, Geun-Seob;Heo, Hye-Jung;Park, Jung-A;Yu, Yong-Suk;Hahm, Eun-Hye;Kang, Sung-Young;Kwon, Ki-Myeon;Lee, Keon-Hyung;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.47 no.4
    • /
    • pp.435-445
    • /
    • 2008
  • Due to internal feeding behavior, the oriental tobacco budworm, Helicoverpa assulta ($Guen\acute{e}e$), infesting hot pepper has been regarded to be effectively controlled by targeting egg and neonate larval stages just before entering the fruits. This study aimed to develop an efficient biological control method focusing on these susceptible stages of H. assulta. An egg parasitoid wasp, Trichogramma evanescens Westwood, was confirmed to parasitize the eggs of H. assulta. A mixture of Gram-positive soil bacterium, Bacillus thuringiensis subsp. kurstaki, and Gram-negative entomopathogenic bacterium, Xenorhabdus nematophila ANU101, could effectively kill neonate larvae of H. assulta. A sex pheromone trap monitored the occurrence of field H. assulta adults. The microbial insecticide mixture was proved to give no detrimental effects on immature development and adult survival of the wasp by both feeding and contact toxicity tests. A combined treatment of egg parasitoid and microbial pesticide was applied to hot pepper fields infested by H. assulta. The mixture treatment of both biological control agents significantly decreased the fruit damage, which was comparable to the chemical insecticide treatment, though either single biological control agent did not show any significant control efficacy. This study also provides morphological and genetic characters of T. evanescens.

Mechanical and physical control of tree insect pest (병해충 방제 - 수목해충의 기계적, 물리적 방제)

  • Sin, Sang-Cheol
    • Landscaping Tree
    • /
    • s.127
    • /
    • pp.32-36
    • /
    • 2012
  • 수목에 있어서 해충방제란 인간에게 경제적 손실을 초래하고 해충의 활동을 억제하는 것으로서, 수목 해충의 밀도 개체수를 일정한 수준 이하로 조절하는 것을 의미한다. 즉 유해한 생물이 존재하더라도 그 밀도가 인간에게 심각한 피해를 줄 정도가 아니면 굳이 시간과 경비를 투자하여 방제 작업을 수행할 필요가 없다. 어떤 해충의 밀도가 점점 높아져서 이들에 의한 피해를 방치 하였을 때 예상되는 손실액이 방제에 소요될 제반 비용보다 높을 경우에는 방제 수단을 적용해야 할 것이며, 이러한 해충에 의한 손실액과 방제비용이 같을 때의 해충밀도를 경제적 피해수준이라고 한다. 따라서 경제적 피해수준을 경계로 하여 방제를 할 것인가 말 것인가를 결정하게 되며 조경수의 경우에는 경관미적 가치도 이러한 경제적 피해수준에 반영되어야 한다고 생각된다. 해충의 방제법을 대별하여 보면 기계적 방제법, 물리적 방제법, 화학적 방제법, 생물학적 방제법, 임업적 방제법, 페로몬과 기타 생리활성물질을 이용한 방제법, 법적 방제법으로 분류할 수 있다. 그러나 최근의 수목해충 방제는 화학적 방제 일변도의 방제가 이루어지고 있기 때문에 환경오염 등 생태환경에 영향을 주고 있는 상황에 있다. 이러한 관점에서 본다면 수목해충 방제는 여러 가지의 방제법을 적지 적소에 활용할 수 있는 종합적인 방제방법이 필요한 시점이라고 할 수 있다. 특히 화학적 방제를 할 시의 주의점 등 각각의 방제법에 대하여는 추후 살펴보도록 하겠으며, 본 지면에서는 직접적 방제법인 기계적 방제법과 물리적인 방제법에 대하여 소개하도록 하겠다.

  • PDF

천적을 이용한 해충방제 전망 - 농약과 천적 동시활용방안 강구돼야

  • 김정부
    • The Bimonthly Magazine for Agrochemicals and Plant Protection
    • /
    • v.10 no.3 s.90
    • /
    • pp.34-41
    • /
    • 1989
  • 최근에 이르러 농약의 살포량 증가에 따른 여러가지 부작용이 대두되므로 무엇보다 살충제를 적게 살포하면서 해충방제의 효력을 경제적 수준 이상으로 높여보자는데 천적의 역할을 평가하지 않을 수 없게 되는듯 싶다. 따라서 작물 해충에 대한 천적들의 종류와 분포상황, 기존 천적들을 보호 증식하는 문제 또는 병원 미생물 천적을 배양하며 농약과 함께 살포하는 문제 등 다양한 연구가 활발히 진행중에 있다고 본다. 그러나 살충제를 살포하지 않고 순수 생물적 방제 수단으로 작물을 재배할 수 있다면 더없이 이상적인 작물재배가 되겠으나 인구 증가에 따른 식량 증산은 필수적이므로 해충방제에 있어서 천적과 화학적 살충제를 동시에 적용하여 방제할 수 있는 종합방제가 바람직할 것으로 생각되어 간략히 소개해본다.

  • PDF

Development of Basic Research for Establishing the Apple IPM System in Korea: Dr. Lee Soon-Won's Research Case (한국형 사과 병해충종합관리(IPM) 체계 수립을 위한 기초연구의 전개: 이순원 박사의 연구 사례)

  • Ahn, Jeong Joon;Oh, Hyeonseok;Choi, Kyung San;Choi, Kyung-Hee;Do, Yun-Su;Lee, Sun-Young;Lee, Dong-Hyuk
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • The concept of integrated pest management (IPM) first developed in the 1950s, and the concept of economic control via pest management was established in the 1960s. Research on IPM began in the United States and Europe, and IPM studies in Korea started with citrus insects and paddy field pests following the distribution of high-yield varieties of rice. Apple IPM in Korea began with research on pest control using chemical pesticides and pesticides resistant to insect pests, studies on the ecology of insect pests and their natural enemies, and the exploitation of sex pheromones on insect pests. Since the 1990s, IPM research and field projects have been carried out simultaneously for farming households. In the 2000s, the development of pest monitoring and forecasting models centered on mating disturbances, database programs for pests, and networks for sharing information. IPM technology has expanded via the development of unmanned forecasting systems and automation technologies in the 2010s.

Agro-ecosystem Diversity and Integrated Mite Pest Management in Fruit Orchards: A Review and Future Prospect (농업생태계 다양성과 과수원 응애류 해충 종합관리: 이론적 고찰과 미래 전망)

  • Kim, Dong-soon
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.49-61
    • /
    • 2021
  • Integrated mite management provided a basic direction to early the fruit tree IPM. The early IPM concept was based on incorporation of the biological control for mite pests with the existing chemical control compatibly. Since then, the hypotheses and mechanisms of the interaction between species diversity and pest population dynamics have provided a broader understanding of mite-centered pest management in fruit tree ecosystems. Based on the principle of the ecosystem, biological control and pest management through habitat modification or manipulation are developing to the concept of agro-ecological engineering. In particular, the natural enemy diversity is dynamically changed according to the different cultivation environment in the management of mite pests, and the species composition of phytophagous mites is also changed by the environment for orchard management. This paper reviews the biological control of mites, which was the basis of apple IPM, and also re-examines the topics of species diversity and pest management, predacious mite diversity in relation to mite control and the change of species composition of mite pests in the sight of ecological engineering. Finally, we suggest a strategy for biological control of spider mites in apple orchards in Korea.

Study on Development of Novel Biopesticides Using Entomopathogenic Bacterial Culture Broth of Xenorhabdus and Photorhabdus (Xenorhabdus 및 Photorhabdus 세균 배양액을 이용한 생물농약 개발에 관한 연구)

  • Seo, Sam-Yeol;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.49 no.3
    • /
    • pp.241-249
    • /
    • 2010
  • Two groups of entomopathogenic bacteria, Xenorhabdus and Photorhabdus, are known to suppress insect immune responses by inhibiting eicosanoid biosynthesis. This study used these bacterial culture broths to develop novel biochemical insecticides against the diamondback moth, Plutella xylostella. Though the bacterial culture broths alone showed little insecticidal activity, they significantly enhanced pathogenicity of Bacillus thuringiensis against the fourth instar larvae of P. xylostella. Sterilization of the bacterial culture broth by autoclaving or $0.2\;{\mu}m$ membrane filtering did not influence the synergistic effect on the pathogenicity of B. thuringiensis. Three metablites identified in the culture broth of X. nematophila also showed similar synergistic effects. In field test, both entomopathogenic bacterial culture broth also enhanced the control efficacy of B. thuringiensis against P. xylostella.

A Review on Control of Mites Using Neem, Chrysanthemum, Shrubby Sophora Extracts and their Effects on Natural Enemies (님, 제충국, 고삼 추출물의 응애류 방제와 천적에 미치는 영향에 대한 고찰)

  • Hyo Jung Kim;Do-ik Kim;Song Hee Han;Young Cheol Kim
    • Korean journal of applied entomology
    • /
    • v.62 no.3
    • /
    • pp.193-205
    • /
    • 2023
  • Botanical insecticides derived from plant extracts exhibit repellent, antifeedant and enzyme-inhibiting activities against insect pests. Among such pests, phytophagous mites are major threats to horticultural crops. Botanical extracts derived from neem, chrysanthemum, and shrubby sophora are employed as field acaricides. These botanical extracts have low toxicities against natural enemies of the insect pests and, thus, are valuable in pest management. This review focuses on the potential for botanical extracts in the controls of mites, with comparisons of the spectrum of activity, the lethal dose and times and their mode of action. This information will enable better formulation of botanical extracts in integrated mite control.

Biological Control Based IPM of Insect Pests on Sweet Pepper in Greenhouse in the Summer (여름작형 시설재배 파프리카의 주요 해충에 대한 생물적방제 기반 종합관리)

  • Choi, Man-Young;Kim, Jeong-Hwan;Kim, Hwang-Yong;Byeon, Young-Woong;Lee, Yong-Hwi
    • Korean journal of applied entomology
    • /
    • v.48 no.4
    • /
    • pp.503-508
    • /
    • 2009
  • Biological-control-based-integrated-pest-management of major pests occurring on sweet pepper in greenhouse during summer season was tried. As many as 2.1 Orius laevigatus per $m^2$ were released in two times on June 6 and 19, and the population of thrips was kept under control and accordingly the damage was negligible throughout the season. To control aphids, a total of 0.8 Aphidius colemani per $m^2$ were released in four times, 0.2 of them at a time, flonicamid on May 14 and July 18 and pymetrozine on June 14 and September 4 were sprayed on the spots of high aphid occurrence to reduce the release of the wasp, and the density of aphids was kept under control. Whitefly was controlled successfully by releasing a total of 343.4 Amblyseius swirski per $m^2$ in nine times, 38.1 of them at a time, from May 9 until November 12 and dinotefuran was sprayed on November 12 when the density of whitefly increased up to 200 per trap. Tetranichus kanzawai was controlled by both Phytoseiulus persimilis which was released a total of 44.4 per $m^2$ in five times 8.9 of them at a time from May 23 to September 10, and the A. swirski which was released for the control of whitefly.