Browse > Article
http://dx.doi.org/10.5656/KSAE.2010.49.3.241

Study on Development of Novel Biopesticides Using Entomopathogenic Bacterial Culture Broth of Xenorhabdus and Photorhabdus  

Seo, Sam-Yeol (Department of Bioresource Sciences, Andong National University)
Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.49, no.3, 2010 , pp. 241-249 More about this Journal
Abstract
Two groups of entomopathogenic bacteria, Xenorhabdus and Photorhabdus, are known to suppress insect immune responses by inhibiting eicosanoid biosynthesis. This study used these bacterial culture broths to develop novel biochemical insecticides against the diamondback moth, Plutella xylostella. Though the bacterial culture broths alone showed little insecticidal activity, they significantly enhanced pathogenicity of Bacillus thuringiensis against the fourth instar larvae of P. xylostella. Sterilization of the bacterial culture broth by autoclaving or $0.2\;{\mu}m$ membrane filtering did not influence the synergistic effect on the pathogenicity of B. thuringiensis. Three metablites identified in the culture broth of X. nematophila also showed similar synergistic effects. In field test, both entomopathogenic bacterial culture broth also enhanced the control efficacy of B. thuringiensis against P. xylostella.
Keywords
Xenorhabdus; Photorhabdus; Biochemical insecticide; Plutella xylostella; Bacillus thuringiensis; Integrated biological control;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Wang, P., J-Z. Zhao, A. Rodrico-Simon, W. Kain, A.F Janmaat, A.M. Shelton, J. Ferre and J.H. Myers. 2007. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Appl. Environ. Microbiol. 73: 1199-1207.   DOI
2 Zhang, X., M. Candas, N. B. Griko, L. Rose-Young and L. A. Bulla Jr. 2005. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor Bt-R1 expressed in insect cells. Cell Death Differ 12: 1407-1416.   DOI
3 Zhang, X., N.B. Griko, S.K. Corona and L.A. Bulla, Jr. 2008. Enhanced exocytosis of the receptor BT-R(I) induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B. 149: 581-588.   DOI
4 Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. J. Microbiol. Mol. Biol. Rev. 62: 775-806.
5 Seo, S. and Y. Kim. 2009. Two entomopathogenic bacteria, Xenorhabdus nematophila K1 and Photorhabdus temperata subsp. temperata ANU101 secrete factors enhancing Bt pathogenicity against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 38: 385-392.   과학기술학회마을   DOI
6 Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112.   DOI
7 Tabashnik, B.E., G.C. Unnithan., L. Masson., D.W. Crowder., X. Li and Y. Carriere. 2009. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Proc. Natl. Acad. Sci. USA 29: 11889-11894
8 Shrestha, S. and Y. Kim. 2009. Biochemical characteristics of immune-associated phospholipase $A_{2}$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47: 774-782.   과학기술학회마을   DOI
9 Silva, C.P., N.R. Waterfield, P.J. Daborn, P. Dean, T. Chilver, C.P. Au, S. Sharma, U. Potter, S.E. Reynolds and R.H. ffrench-Constant. 2002. Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta. Cell. Microbiol. 6: 329-339.
10 Tabashnik, B.E., R.T. Roush, E.D. Earle and A.M. Shelton. 2000. Resistance to Bt toxins. Science 287: 42.
11 Talekar, N.S. and A.M. Shelton. 1993. Biology, ecology, and management of the diamondback moth. Annu. Rev. Entomol. 38: 275-301.   DOI
12 Tanada, Y. and Kaya, H.K. 1993. Insect pathology, Academic Press, San Diego.
13 Luo, H., W.P. Hanratty and C.R. Dearolf. 1995. An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 14: 1412-1420.
14 Oppert, B., K.J. Krammer, R. W. Beeman, D. Johnson and W.H. McGaughey. 1997. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 272: 23473-23476.   DOI
15 Park, N.J., S.C. Oh, Y.H. Choi, K.R. Choi and K.Y. Cho. 2004. lnheritance and cross resistance of phenthoate-selected diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). J. Asia Pac. Entomol. 7: 233-237.   DOI
16 Pigott, C. and D.J. Ellar. 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 71: 255-281.   DOI
17 Park, Y., Y. Yi and Y. Kim. 1999. Identification and characterization of a symbiotic bacterium associated with Steinernema carpocapsae in Korea. J. Asia Pac. Entomol. 2: 105-111.   과학기술학회마을   DOI
18 Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476.   DOI
19 Pham, L.N. and D.S. Schneider. 2008. Evidence for specificity and memory in the insect innate immune response. pp. 97-127.In Insect Immunology, ed. by N.E. Beckage. 348 pp. Academic Press. New York.
20 Qiu, P., P. Pan and S. Govind. 1998. A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125: 1909-1920.
21 Rahman, M.M, H.L.S. Roberts, M. Sarjan, S. Asgari and O. Schmidt. 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth. Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101: 2696-2699.   DOI
22 SAS Institute, Inc. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
23 Jenkins, J.I. and D.H. Dean. 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. eds. by K. Setlow. Plenum, New York.
24 Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248.   DOI
25 Kim, J. 2009. Research trend in biopesticide development. www. bioin. co.kr.
26 Kang, S., S. Han and Y. Kim. 2004. Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337.   과학기술학회마을   DOI
27 Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206.   DOI
28 Kim, H.H., Y.S. Seo, J.H. Lee and K.Y. Cho. 1990. Development of fenvalerate resistance in the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) and its cross resistance. Kor. J. Appl. Entomol. 29: 194-200.
29 Kim, Y., D. Ji, S. Cho and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdusk, share an inhibitory action against Phospholipase $A_{2}$ to induce host innunodepression. J. Invertebr. Pathol. 89: 258-264.   DOI
30 Kwon, S. and Y. Kim. 2007. Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control. 42: 72-76.   DOI
31 Kwon, S. and Y. Kim. 2008. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 101: 36-41.   DOI
32 Forcada, C., E. Alcacer, M.D. Garcera, A. Tato and R. Martinez. 1999. Resistance to Baciilus thuringiensis Cry Ac toxin in three strains of Heliothis virescent proteolytic and SIM study of the larval midgut. Arch. lnsect Bitchen. Physiol. 42: 51-63.   DOI
33 Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636.   DOI
34 Forst, S. B. Dedos, N. Boemare and E. Stackebrandt. 1997. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51: 47-72.   DOI
35 Gahan, L.J., F. Gould and D.G. Heckel. 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293: 857-86l.   DOI   ScienceOn
36 Gassmann, A.J., J.A. Fabrick, M.S. Sisterson, E.R. Hannon, S.P. Stock, Y. Carriere and B.E. Tabashnik. 2009. Effects of pink bollworm resistance to Bacillus thuringiensis on phenoloxidase activity and susceptibility to entomopathogenic nematodes. J. Econ. Entomol. 102: 1224-1232.   DOI
37 Gillespie, J.P., M.R. Kanost and T. Trenczek. 1997. Biological mediators of insect immunity. Annu Rev. Entomol. 42: 611-643.   DOI
38 Harrison, D.A., R. Binari, T.S. Nahreini, M. Gilman and N. Perrimon. 1995. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14: 2857-2865.
39 Hoffman, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-7848.   DOI
40 Jacot, A., H. Scheuber, J. Kurtz and M.W. Brinkhof. 2005. Juvenile immune system activation induces a costly upregulation of adult immunity in field crickets, Gryllus campestris. Proc. Biol. Sci. 272: 63-69.   DOI
41 Corpping, L.G. 2004. The manual of biocontrol agents. BCPC, Hampshire, UK.
42 Akhurst, R.J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309.
43 Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103: 15196-15199.   DOI
44 Corpping, L.G. and J.J. Menn. 2000. Biopesticides: a review of their action, application and efficacy. Pest Manage. Sci. 56: 651-676.   DOI
45 Dionne, M.S., L.N. Pham, M. Shirasu-Hiza and D.S. Schneider. 2006. Akt and FOXO dysregulation contribute to infection induced wasting in Drosophila. Curr. Biol. 16: 1977-1985.   DOI
46 Dunphy, G.B. and J.M. Webster. 1991. Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella. J. lnvertebr. Pathol. 58: 40-51.   DOI
47 Dunphy, G.B. and J.M. Webster. 1994. Interaction of Xenorhabdus nematophila subsp. nematophilus with the haemolymph of Galleria mellonella. J. lnsect Physiol. 30: 883-889.
48 Ferre J. and J. Van Rie. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47: 501-533.   DOI
49 ffrench-Constant, R.H., N. Waterfield and P. Dabom. 2005. lnsecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive molecular insect science, eds. by L.I. Gilbert, I. Kostas and S.S. Gill. Elsevier, New York.
50 Adams, B.J. and K.B. Nguyen. 2002. Taxonomy and systematics. pp. 1-33. In Entomopathogenic nematology, ed. by R. Gaugler. CABI Publishing, New York.