• Title/Summary/Keyword: 종양움직임

Search Result 11, Processing Time 0.025 seconds

Evaluation of Difference between Skin Motion and Tumor Motion for Respiration Gated Radiotherapy (호흡조절방사선치료를 위한 피부움직임과 종양움직임 차이 평가)

  • Kwon, Kyung-Tae;Lim, Sang-Wook;Park, Sung-Ho;Kwon, Soo-Il;Shin, Sung-Soo;Lee, Sang-Wook;Ahn, Seung-Do;Kim, Jong-Hoon;Choi, Eun-Kyung
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 2008
  • Accounting for tumor motion in treatment planning and delivery is one of the most recent and significant challenges facing radiotherapy. The purpose of this study was to investigate the correlation and clarified the relationship between the motion of an external marker using the Real-Time Position Management (RPM) System and an internal organ motion signal obtained fluoroscope. We enrolled 10 patients with locally advanced lung cancer and liver cancer, retrospectively. The external marker was a plastic box, which is part of the RPM used to track the patient's respiration. We investigated the quantitatively correlation between the motions of an external marker with RPM and internal motion with fluoroscope. The internal fiducial motion is predominant in the caraniocaudal direction, with a range of $1.3{\sim}3.5cm$ with fluoroscopic unit. The external fiducial motion is predominant in the caraniocaudal direction, with a range of $0.43{\sim}2.19cm$ with RPM gating. The two measurements ratio is from 1.31 to 5.56. When the regularization guided standard deviation is from 0.08 to 0.87, mean 0.204 cm, except only for patients #3 separated by a mean 0.13 cm, maximum of 0.23 cm. This result is a good correlation between internal tumor motion imaged by fluoroscopic unit and external marker motion with RPM during expiration within 0.23 cm. We have demonstrated that gating may be best performed but special attention should be paid to gating for patients whose fiducials do not move in synchrony, because targeting on the correct phase difference alone would not guarantee that the entire tumor volume is within the treatment field.

  • PDF

Study of Motion-induced Dose Error Caused by Irregular Tumor Motion in Helical Tomotherapy (나선형 토모테라피에서 불규칙적인 호흡으로 발생되는 움직임에 의한 선량 오차에 대한 연구)

  • Cho, Min-Seok;Kim, Tae-Ho;Kang, Seong-Hee;Kim, Dong-Su;Kim, Kyeong-Hyeon;Cheon, Geum Seong;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.119-126
    • /
    • 2015
  • The purpose of this study is to analyze motion-induced dose error generated by each tumor motion parameters of irregular tumor motion in helical tomotherapy. To understand the effect of the irregular tumor motion, a simple analytical model was simulated. Moving cases that has tumor motion were divided into a slightly irregular tumor motion case, a large irregular tumor motion case and a patient case. The slightly irregular tumor motion case was simulated with a variability of 10% in the tumor motion parameters of amplitude (amplitude case), period (period case), and baseline (baseline case), while the large irregular tumor motion case was simulated with a variability of 40%. In the phase case, the initial phase of the tumor motion was divided into end inhale, mid exhale, end exhale, and mid inhale; the simulated dose profiles for each case were compared. The patient case was also investigated to verify the motion-induced dose error in 'clinical-like' conditions. According to the simulation process, the dose profile was calculated. The moving case was compared with the static case that has no tumor motion. In the amplitude, period, baseline cases, the results show that the motion-induced dose error in the large irregular tumor motion case was larger than that in the slightly irregular tumor motion case or regular tumor motion case. Because the offset effect was inversely proportion to irregularity of tumor motion, offset effect was smaller in the large irregular tumor motion case than the slightly irregular tumor motion case or regular tumor motion case. In the phase case, the larger dose discrepancy was observed in the irregular tumor motion case than regular tumor motion case. A larger motion-induced dose error was also observed in the patient case than in the regular tumor motion case. This study analyzed motion-induced dose error as a function of each tumor motion parameters of irregular tumor motion during helical tomotherapy. The analysis showed that variability control of irregular tumor motion is important. We believe that the variability of irregular tumor motion can be reduced by using abdominal compression and respiratory training.

폐암 세기변조방사선치료 시 최적화된 조사계획 설정과 가상 장기 설정에 관한 연구

  • Lee, Seok;Lee, Chang-Geol;Cho, Sam-Ju;Chu, Sung-Sil;Lee, Sang-Hoon;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.34-34
    • /
    • 2003
  • 목적 : 폐암 환자 세기변조방사선치료 과정을 소개하고, 방사선치료계획의 최적화를 위한 빔 수와 방향, 가상장기 설정 (virtual organ delineation, VOD) 및 선량 제한 인자들의 이용에 대해 평가함으로써 폐, 심장 등에 조사되는 선량을 최소화하는데 사용하는 세기변조방사선치료 (intensity modulated radiotherapy, IMRT) 기술의 유용성을 평가하고자한다. 대상 및 방법 : 종양이 종격동을 침범하여 상대적으로 장기움직임에 의한 오차가 적은 폐암환자 5 명을 대상으로 하였다. 환자고정장치는 상반신을 편안하게 유지함과 동시에 팔의 위치를 고정시킴으로써 기대할 수 있는 환자고정효과와 벨트를 이용하여 환자 상복부를 압박해줌으로써 호흡운동에 의한 장기 움직임을 감소시킬 수 있는 형태로 고안하였다. 치료계획시 빔 수와 방향은 5,7,9 문 (from 200 to 160, equispaced field, arbitrary field), 4 문 (anterior, posterior, bilateral posterior oblique field) 과 비등방 7, 9 문 (non-equispaced field, arbitrary field) 등을 사용하였다. 선량제한 ($V_{20}V_{25}$)은 문헌에 기초하여 설정하였으며, 가상장기를 적절히 사용하여 최적화된 치료계획 결과를 얻었다. 방사선치료계획 평가는 선량-체적간 히스토그람 (DVH), 등선량곡선 및 선량통계 등을 이용하여 수행하였다. 특히 가상장기 설정 전, 후의 결과 값을 분석함으로써 그 유용성을 확인하였다. 결과 : 9문 등방-IMRT와 7문 비등방-IMRT 방법이 치료계획용적의 선량균질성 (PTV dose homogeneity), 평균 폐선량 (mean lung dose) 및 $V_{20}V_{25}$ 모두에서 20% 이내의 좋은 결과를 얻을 수 있었고, 가상 장기를 설정함으로써 같은 결과를 가져옴을 알 수 있었다. 또한 폐암 세기변조방사선치료 프로토콜을 작성하여 임상에 사용함으로써 치료과정 중 발생할 수 있는 오류를 보완할 수 있음을 알 수 있었다. 결론 : 폐암 세기변조방사선치료 시 사용할 수 있는 프로토콜을 작성하였고, 적절한 가상 장기 및 조사계획 설정으로 치료계획의 최적화를 얻을 수 있음을 알 수 있었다.

  • PDF

Measurement of Respiratory Motion Signals for Respiratory Gating Radiation Therapy (호흡동조 방사선치료를 위한 호흡 움직임 신호 측정)

  • Chung, Jin-Beom;Chung, Won-Kyun;Kim, Yon-Lae;Lee, Jeong-Woo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.59-63
    • /
    • 2005
  • Respiration motion causes movement of internal structures in the thorax and abdomen, making accurate delivery of radiation therapy to tumors in those areas a challenge. Accounting for such motion during treatment, therefore, has the potential to reduce margins drawn around the clinical target volume (CTV), resulting in a lower dose to normal tissues (e.g., lung and liver) and thus a lower risk of treatment induced complications. Among the techniques that explicitly account for intrafraction motion are breath-hold, respiration gating, and 4D or tumor-tracking techniques. Respiration gating methods periodically turn the beam on when the patient's respiration signal is in a certain part of the respiratory cycle (generally end-inhale or end-exhale). These techniques require acquisition of some form of respiration motion signal (infrared reflective markers, spirometry, strain gauge, thermistor, video tracking of chest outlines and fluoroscopic tracking of implanted markers are some of the techniques employed to date), which is assumed to be correlated with internal anatomy motion. In preliminary study for the respiratory gating radiation therapy, we performed to measurement of this respiration motion signal. In order to measure the respiratory motion signals of patient, respiration measurement system (RMS) was composed with three sensor (spirometer, thermistor, and belt transducer), 4 channel data acquisition system and mobile computer. For two patients, we performed to evaluation of respiratory cycle and shape with RMS. We observed under this system that respiratory cycle is generally periodic but asymmetric, with the majority of time spent. As expected, RMS traced patient's respiration each other well and be easily handled for application.

  • PDF

Accuracy Evaluation of Tumor Therapy during Respiratory Gated Radiation Therapy (호흡동조방사선 치료 시 종양 치료의 정확도 평가)

  • Jang, Eun-Sung;Kang, Soo-Man;Lee, Chol-Soo;Kang, Se-Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.113-122
    • /
    • 2010
  • Purpose: To evaluate the accuracy of a target position at static and dynamic state by using Dynamic phantom for the difference between tumor's actual movement during respiratory gated radiation therapy and skin movement measured by RPM (Real-time Position Management). Materials and Methods: It self-produced Dynamic phantom that moves two-dimensionally to measure a tumor moved by breath. After putting marker block on dynamic phantom, it analyzed the amplitude and status change depending on respiratory time setup in advance by using RPM. It places marker block on dynamic phantom based on this result, inserts Gafchromic EBT film into the target, and investigates 5 Gy respectively at static and dynamic state. And it scanned investigated Gafchromic EBT film and analyzed dose distribution by using automatic calculation. Results: As a result of an analysis of Gafchromic EBT film's radiation amount at static and dynamic state, it could be known that dose distribution involving 90% is distributed within margin of error of 3 mm. Conclusion: As a result of an analysis of dose distribution's change depending on patient's respiratory cycle during respiratory gated radiation therapy, it is expected that the treatment would be possible within recommended margin of error at ICRP 60.

  • PDF

Quantitative Comparison of Motion Artifacts in PET Images using Data-Based Gating (데이터 기반 게이팅을 이용한 PET 영상의 움직임 인공물의 정량적 비교)

  • Jin Young, Kim;Gye Hwan, Jin
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.91-98
    • /
    • 2023
  • PET is used effectively for biochemical or pathological phenomena, disease diagnosis, prognosis determination after treatment, and treatment planning because it can quantify physiological indicators in the human body by imaging the distribution of various biochemical substances. However, since respiratory motion artifacts may occur due to the movement of the diaphragm due to breathing, we would like to evaluate the practical effect by using the a device-less data-driven gated (DDG) technique called MotionFree with the phase-based gating correction method called Q.static scan mode. In this study, images of changes in moving distance (0 cm, 1 cm, 2 cm, 3 cm) are acquired using a breathing-simulated moving phantom. The diameters of the six spheres in the phantom are 10 mm, 13 mm, 17 mm, 22 mm, 28 mm, and 37 mm, respectively. According to maximum standardized uptake value (SUVmax) measurements, when DDG was applied based on the moving distance, the average SUVmax of the correction effect by the moving distance was improved by 1.92, 2.48, 3.23 and 3.00, respectively. When DDG was applied based on the diameter of the phantom spheres, the average SUVmax of the correction effect by the moving distance was improved by 2.37, 2.02, 1.44, 1.20, 0.42 and 0.52 respectively.

Prediction of Target Motion Using Neural Network for 4-dimensional Radiation Therapy (신경회로망을 이용한 4차원 방사선치료에서의 조사 표적 움직임 예측)

  • Lee, Sang-Kyung;Kim, Yong-Nam;Park, Kyung-Ran;Jeong, Kyeong-Keun;Lee, Chang-Geol;Lee, Ik-Jae;Seong, Jin-Sil;Choi, Won-Hoon;Chung, Yoon-Sun;Park, Sung-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.132-138
    • /
    • 2009
  • Studies on target motion in 4-dimensional radiotherapy are being world-widely conducted to enhance treatment record and protection of normal organs. Prediction of tumor motion might be very useful and/or essential for especially free-breathing system during radiation delivery such as respiratory gating system and tumor tracking system. Neural network is powerful to express a time series with nonlinearity because its prediction algorithm is not governed by statistic formula but finds a rule of data expression. This study intended to assess applicability of neural network method to predict tumor motion in 4-dimensional radiotherapy. Scaled Conjugate Gradient algorithm was employed as a learning algorithm. Considering reparation data for 10 patients, prediction by the neural network algorithms was compared with the measurement by the real-time position management (RPM) system. The results showed that the neural network algorithm has the excellent accuracy of maximum absolute error smaller than 3 mm, except for the cases in which the maximum amplitude of respiration is over the range of respiration used in the learning process of neural network. It indicates the insufficient learning of the neural network for extrapolation. The problem could be solved by acquiring a full range of respiration before learning procedure. Further works are programmed to verify a feasibility of practical application for 4-dimensional treatment system, including prediction performance according to various system latency and irregular patterns of respiration.

  • PDF

Utility Estimation of the Manufactured Stereotactic Body Radiotherapy Immobilization (자체 제작한 정위적체부방사선치료(Stereotactic Body Radiotherapy) 고정용구의 유용성 평가)

  • Lee, Dong-Hoon;Ahn, Jong-Ho;Seo, Jeong-Min;Shin, Eun-Hyeok;Choi, Byeong-Gi;Song, Gi-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Purpose: Immobilizations used in order to maintain the reproducibility of a patient set-up and the stable posture for a long period are important more than anything else for the accurate treatment when the stereotactic body radiotherapy is underway. So the purpose of this study is to adapt the optimum immobilizations for the stereotactic body radiotherapy by comparing two commercial immobilizations with the self-manufactured immobilizations. Materials and Methods: Five people were selected for the experiment and three different immobilizations (A: Wing-board, B: BodyFix system, C: Arm up holder with vac-lock) were used to each target. After deciding on the target's most stable respiratory cycles, the targets were asked to wear a goggle monitor and maintain their respiration regularly for thirty minutes to obtain the respiratory signals. To analyze the respiratory signal, the standard deviation and the variation value of the peak value and the valley value of the respiratory signal were separated by time zone with the self-developed program at the hospital and each tie-downs were compared for the estimation by calculating a comparative index using the above. Results: The stability of each immobilizations were measured in consideration of deviation changes studied in each respiratory time lapse. Comparative indexes of each immobilizations of each experimenter are shown to be A: 11.20, B: 4.87, C: 1.63 / A: 3.94, B: 0.67, C: 0.13 / A: 2.41, B: 0.29, C: 0.04 / A: 0.16, B: 0.19, C: 0.007 / A: 35.70, B: 2.37, C: 1.86. And when all five experimenters wore the immobilizations C, the test proved the most stable value while four people wearing A and one man wearing D expressed relatively the most unstable respiratory outcomes. Conclusion: The self-developed immobilizations, so called the arm up holder vac-lock for the stereotactic body radiotherapy is expected to improve the effect of the treatment by decreasing the intra-fraction organ motions because it keeps the respiration more stable than other two immobilizations. Particularly in case of the stereotactic body therapy which requires the maintenance of set-up state for a long time, the self-developed immobilizations is thought to more useful for stereotactic body radiotherapy rather than the rest two immobilizations with instable respiratory cycle as time passes.

  • PDF

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.

Preliminary Investigations of the Dosimetric Properties of a Normoxic Polymethacrylic Acid Gel Dosimeter Using a Respiration-Motion Simulator (호흡모의움직임장치를 이용한 정상산소 폴리메타크릴산 겔 선량계의 선량특성)

  • Park, Chae Hee;Cho, Yu Ra;Cho, Kwang Hwan;Park, Ji Ae;Kim, Kyeong Min;Kim, Kum Bae;Jung, Hai Jo;Ji, Young Hoon;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.138-144
    • /
    • 2012
  • Dose distribution throughout the clinical organ range of motion was analyzed using a respiratory-motion simulator that was equipped with a polymer gel dosimeter and EBT2 film. The normoxic polymer gel dosimeter was synthesized from gelatin, MAA, HQ, THPC and HPLC. The gel dosimeter and EBT2 film were irradiated with Co-60 gamma rays that were moved along the x-axis and y-axis in ${\pm}1.5cm$ steps at five-second intervals. The field size was $5{\times}5cm^2$. The SSD was 80 cm and set to 10 Gy at a depth of 2 cm. The PDD at a depth of 50 mm was 75.2% in the ion chamber, 82.3% in the static state and 86.1% in the dynamic state in the gel dosimeter. The penumbra for the dynamic state target, which was measured using the gel dosimeter, averaged 10.89 mm, this is a 40.5% increase over the penumbra of the static state target of 7.74 mm. In addition, when measuring with gel dosimetry, the value for the penumbra is 36.6% smaller in the static state and 29.4% smaller in the dynamic state compared to measuring with film. The aim of this study was to investigate the dosimetric properties of a normoxic polymethacrylic acid gel dosimeter in static and dynamic states and to evaluate the potentiality as a relative dosimeter for dynamic therapeutic radiation.