호흡모의움직임장치를 이용한 정상산소 폴리메타크릴산 겔 선량계의 선량특성

Preliminary Investigations of the Dosimetric Properties of a Normoxic Polymethacrylic Acid Gel Dosimeter Using a Respiration-Motion Simulator

  • 박채희 (경기대학교 대학원 의학물리학과) ;
  • 조유라 (경기대학교 대학원 의학물리학과) ;
  • 조광환 (경기대학교 대학원 의학물리학과) ;
  • 박지애 (한국원자력의학원 방사선의학연구소) ;
  • 김경민 (한국원자력의학원 방사선의학연구소) ;
  • 김금배 (한국원자력의학원 방사선의학연구소) ;
  • 정해조 (한국원자력의학원 방사선의학연구소) ;
  • 지영훈 (한국원자력의학원 방사선의학연구소) ;
  • 권수일 (경기대학교 대학원 의학물리학과)
  • Park, Chae Hee (Department of Medical Physics, Kyonggi University) ;
  • Cho, Yu Ra (Department of Medical Physics, Kyonggi University) ;
  • Cho, Kwang Hwan (Department of Medical Physics, Kyonggi University) ;
  • Park, Ji Ae (Research Institute of Radiological and Medical Science, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Kyeong Min (Research Institute of Radiological and Medical Science, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Kum Bae (Research Institute of Radiological and Medical Science, Korea Institute of Radiological and Medical Sciences) ;
  • Jung, Hai Jo (Research Institute of Radiological and Medical Science, Korea Institute of Radiological and Medical Sciences) ;
  • Ji, Young Hoon (Research Institute of Radiological and Medical Science, Korea Institute of Radiological and Medical Sciences) ;
  • Kwon, Soo-Il (Department of Medical Physics, Kyonggi University)
  • 투고 : 2012.08.18
  • 심사 : 2012.09.12
  • 발행 : 2012.09.30

초록

움직이는 종양의 선량분포는 중합체 겔과 EBT2을 이용하여 필름호흡운동 모의치료기로 분석하였다. 중합체 겔 선량계는 젤라틴, MAA, HQ, THPC, HPLC를 이용하여 합성되었다. 겔 선량계와 EBT2 필름은 5초 간격으로 x축과 y축으로 ${\pm}1.5cm$씩 움직이면서 Co-60 감마선을 이용하여 조사하였다. 조사면의 크기 $5{\times}5cm^2$, SSD 80 cm, 2 cm 깊이에 10 Gy를 조사하였다. 50 mm 깊이에서의 심부선량백분율(PDD)은 이온전리함에서 75.2%였고, 겔 선량계로 측정한 결과 정적상태(static state)에서 82.3%, 동적상태(dynamic state)에서 86.1%였다. 겔 선량계를 이용하여 측정한 동적상태의 반음영(penumbra)은 평균 10.89 mm로 정적상태 반음영의 크기인 7.74 mm 보다 40.5%가 증가하였다. 추가적으로 필름을 이용하여 측정된 반음영의 크기와 비교했을 때 정적상태에서 36.6%, 동적상태에서 29.4%가 작았다.

Dose distribution throughout the clinical organ range of motion was analyzed using a respiratory-motion simulator that was equipped with a polymer gel dosimeter and EBT2 film. The normoxic polymer gel dosimeter was synthesized from gelatin, MAA, HQ, THPC and HPLC. The gel dosimeter and EBT2 film were irradiated with Co-60 gamma rays that were moved along the x-axis and y-axis in ${\pm}1.5cm$ steps at five-second intervals. The field size was $5{\times}5cm^2$. The SSD was 80 cm and set to 10 Gy at a depth of 2 cm. The PDD at a depth of 50 mm was 75.2% in the ion chamber, 82.3% in the static state and 86.1% in the dynamic state in the gel dosimeter. The penumbra for the dynamic state target, which was measured using the gel dosimeter, averaged 10.89 mm, this is a 40.5% increase over the penumbra of the static state target of 7.74 mm. In addition, when measuring with gel dosimetry, the value for the penumbra is 36.6% smaller in the static state and 29.4% smaller in the dynamic state compared to measuring with film. The aim of this study was to investigate the dosimetric properties of a normoxic polymethacrylic acid gel dosimeter in static and dynamic states and to evaluate the potentiality as a relative dosimeter for dynamic therapeutic radiation.

키워드

참고문헌

  1. Kubo HD, Len PM, Minohara S, et al: Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center. Med Phys 27:346-353 (2000) https://doi.org/10.1118/1.598837
  2. Kim, YL, Chung JB, Chung WK, et al: An Effect of Time Gating Threshold (TGT) on the Delivered Dose at Internal Organ with Movement due to Respiration. Korean J Med Phys 16:89-96 (2005)
  3. Park SW, Jung HJ, Kim KB, et al: Development and Evaluation of a Target-tracking Radiation-therapy system Using a Multileaf Collimator (MLC) Synchronized with Moving Organs. J Korean Phys Soc 55:694-701 (2009) https://doi.org/10.3938/jkps.55.694
  4. Kanagaki B, Read PW, Molloy JA, Larner M, Sheng K: A motion phantom study on helical tomotherapy: the dosimetric impacts of delivery technique and motion. Phys Med Biol 52: 243-255 (2007) https://doi.org/10.1088/0031-9155/52/1/016
  5. Ceberg S, Karlsson A, Gustavsson H, et al: Verification of dynamic radiotherapy:the potential for 3D dosimetry under respiratory-like motion using polymer gel. Phys Med Biol 53: N387-N396 (2008) https://doi.org/10.1088/0031-9155/53/20/N02
  6. Kim MS, Ha S, Lee DH, et al: Distribution of the dose profile in a three-dimensional moving phantom to simulated tumor motion during image-guided radiosurgery. Radiation Oncology Journal 25(4):268-277 (2007)
  7. Suh Y, Yi B, Ahn S, Kim J, Lee S, Shin S, Choi E: Aperture maneuver with compelled breath for moving tumors: A feasibility study with a moving phantom. Med Phys 31(4): 760-766 (2004) https://doi.org/10.1118/1.1650565
  8. Cho YR, Park HW, Kim AR, et al: Fabrication of a normoxic polymer gel dosimeter and its dose distribution characteristics. J Korean Phy Soc 59(1): 169-175 (2011) https://doi.org/10.3938/jkps.59.169
  9. Cho SJ: A study on normoxic polymer gel dosimeter. PhD thesis (2007)
  10. Ju SG, Ahn YC, Huh SJ, Yeo IJ: Film dosimetry for intensity modulated radiation therapy: dosimetric evaluation. Med Phys 29(3):351-355 (2002) https://doi.org/10.1118/1.1449493
  11. Fuss M, Sturtewagen E, De Wagter C, Georg D: Dosimetric characterization of Gafchromic EBT film and its implication on film dosimetry quality assurance. Phys Med Biol 52(14):4211-4225 (2007) https://doi.org/10.1088/0031-9155/52/14/013
  12. Nath R, Biggs PJ, Bova FJ, et al: AAPM code of practice for radiotherapy accelerators: report of AAPM radiation Therapy Task Group No. 45. Med Phys 21:1093-1121 (1994) https://doi.org/10.1118/1.597398
  13. Baldock C, Deene YD, Doran S, et al: Polymer gel dosimetry. Phys Med Biol 55:R1-R63 (2010) https://doi.org/10.1088/0031-9155/55/5/R01
  14. Jirasek A: Experimental investigations of polymer gel dosimeters. J Phys Conf Ser 56:23-34 (2006) https://doi.org/10.1088/1742-6596/56/1/003
  15. Cho KH, Cho SJ, Lee S, et al: Dose responses in a normoxic polymethacrylic acid gel dosimeter using optimal CT scanning parameters. Nuclear Instruments and Methods in Physics Research A 675:112-117 (2012) https://doi.org/10.1016/j.nima.2012.01.067