• Title/Summary/Keyword: 종방향 거동

검색결과 176건 처리시간 0.03초

설계강도 60MPa급 고강도 PSC의 내하성능 검토 (An Experimental Study for Performance of PSC-I Girders with 60MPa High-Strength Concrete)

  • 이재용;민경환;양준모;정해문;안태송;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.9-12
    • /
    • 2008
  • PSC-I거더형태는 교량설계에 있어 널리 쓰이는 형태이다. 현재 일부 선진국가들은 고강도콘크리트를 교량에 적용하고 있는 반면 국내에는 다소 낮은 강도의 콘크리트(40MPa)를 사용하고 있다. 이에 따라 본 논문은 고강도 콘크리트를 실용화하기 위해 고강도 콘크리트를 타설한 부재의 특성과 거동에 대해 연구하였다. 이를 위해 4개의 거더를 제작하여 부재의 성능과 구조적 거동을 분석하였다. 실험에 앞서 상용프로그램을 이용하여 예상되는 거동을 구조해석을 통해 알아보았다. 스틸 게이지와 콘크리트 게이지를 매립하여 철근과 콘크리트의 종방향, 횡방향 변형율을 측정하였고. LVDT(Linear Variable Differential Transducer)을 중앙부와 지점에 설치해 부재의 처짐 및 변형을 측정하였다. 긴장작업시와 구조실험간 하중-처짐 관계와 균열하중의 실험결과를 구조해석 결과와 비교 분석하였다. 이를 통해 고강도 콘크리트를 부재에 적용하였을 때 거동변화와 긍정적인 효과에 대해 알아보았다.

  • PDF

현장실험을 통한 포스트텐션드 프리스트레스트 콘크리트 포장의 긴장 시 거동분석 (Field Measurement and Analysis of Post-Tensioned Prestressed Concrete Pavement Behavior under Tensioning)

  • 박희범;김성민;김동호
    • 한국도로학회논문집
    • /
    • 제11권1호
    • /
    • pp.247-256
    • /
    • 2009
  • 본 연구는 포스트텐션드 프리스트레스트 콘크리트 포장(PTCP: Post-Tensioned prestressed Concrete Pavement) 공법의 국내 적용을 위해 수행한 시험시공시에 현장실험을 통해 PTCP의 긴장시 구조적 거동을 분석하기 위하여 수행되었다. 실험을 위해 온도측정센서 및 변위측정게이지를 슬래브에 장착하여 환경하중 및 긴장력 도입에 따른 슬래브의 변위변화를 측정하였다. 총 세 차례에 걸쳐 긴장력을 도입하였으며 긴장작업의 적절성을 온도와 변위의 상관관계 횡방향 균열거동, 일일 종방향 변위변화량 등을 분석하여 판단하였다. 실험결과 타설초기 1차 긴장시에는 슬래브와 하부층과의 마찰 및 콘크리트의 소성성질 등의 요인에 의해 슬래브의 양끝단 부분에서만 큰 변위가 발생하였으나 이후 어느 정도의 시간이 경과한 후 가해진 긴장에서는 슬래브 전체에 뚜렷한 변위가 발생되나 여전히 마찰저항의 영향을 받는 것으로 분석되었다. 또한 긴장이 제대로 가해지면 균열이 존재하더라도 비활성화되어 슬래브가 일체의 거동을 나타내었다.

  • PDF

선박 계류시스템의 종방향 외력하의 비선형 동적거동 해석 (Dynamical Analysis of the Mooring Vessel System Under Surge Excitations)

  • 이상도;유삼상
    • 해양환경안전학회지
    • /
    • 제24권2호
    • /
    • pp.140-145
    • /
    • 2018
  • 본 연구는 두점식 선박 계류시스템의 종방향 외력에 대한 비선형 동적거동 해석을 수행하였다. 특정 입력 매개변수에 대한 카오스 운동과 한계주기궤도 등의 비선형 거동의 특성을 연구하였다. 주로 비선형복원력은 계류시스템의 강한 비선형성과 동적거동의 다양성을 제공한다. 계의 운동방정식 시뮬레이션에 사용된 수치 적분기는 4차 룽게쿠타법이다. 외력진폭과 주파수를 변화시킬 때 분기 그림과 동적불안정 현상들을 볼 수 있다. 외력의 주파수(진동수)가 0.4 rad/s인 경우 수많은 혼돈상태 점들 사이에 주기창이라 불리는 안정적인 주기해가 관측된다. 주파수가 0.7 rad/s인 경우는 외력진폭이 1.0을 초과할 때 혼돈 영역이 갑자기 증가한다. 주파수가 1.0 rad/s인 경우는 주파수가 0.4 rad/s 및 0.7 rad/s인 경우와 비교해 볼 때, 혼돈 운동이 약화된다. 아울러, 두점식 계류시스템은 각 매개변수에서 준주기 운동, 한계주기궤도, 대칭성의 깨짐과 같은 다양한 정상상태의 궤적이 관측된다.

부착식 PSC 텐던의 도입 긴장응력이 종진동 메카니즘에 미치는 영향 (Effect of Applied Tensile Stress of Bonded PSC Tendon on Longitudinal Vibration Mechanism)

  • 김병화;김수진;여금수;조승제
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.392-395
    • /
    • 2011
  • 본 논문은 부착식 PSC 텐던에 도입된 긴장응력이 종진동 메카니즘에 미치는 영향을 소개한다. 텐던의 종방향 변형과 비틀림 변형은 상호 연동하여 거동하고, 텐던에 도입된 긴장응력은 축강성과 비틀림 강성에 영향을 미친다. 따라서 텐던의 탄성파 속도는 도입된 긴장응력의 크기에 따라서 변한다. 실험적 검증을 위하여 도입 긴장응력이 다른 6개의 부착식 PSC 시험체에 대한 종진동 실험이 수행되었다. 실험결과로부터 도입 응력과 탄성파 속도와의 역학적 관계를 확인하였으며, 기존 문헌의 실험결과와 비교하였다.

  • PDF

초고강도 섬유보강 콘크리트 분절형 박스 거더의 휨거동 (Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder)

  • 궈칭용;한상묵
    • 콘크리트학회논문집
    • /
    • 제26권2호
    • /
    • pp.109-116
    • /
    • 2014
  • 압축강도 160MPa과 길이 15.4 m를 가진 초고강도 섬유보강 콘크리트 분절박스 거더의 휨거동 실험을 수행하였다. 초고강도 섬유보강 콘크리트 분절 박스에 연성거동 특성을 보강하기 위한 강섬유와 종방향철근의 조합 효과를 두종류의 강섬유 혼입률로 제작된 초고강도 분절형 박스거더의 휨거동을 비교함으로써 평가하였다. 강섬유 혼입률이 1%이고 전단철근과 상부플랜지와 복부에 종방향철근으로 보강한 초고강도 콘크리트 박스거더 BF2의 거동은 탄성응력대에서 전단철근 없이 강섬유 혼입률 2%인 초고강도 섬유보강 콘크리트 박스거더와 유사한 연성거동을 보여준다. 그러나 비선형응력대에서는 BF1의 강성이 약간 더 크고 안정적인 연성거동 형태를 보여주고 있다. 초고강도 섬유보강 콘크리트 박스거더의 분절면은 휨파괴 시까지 균열이나 슬립이 발생하지 않았다.

강섬유와 철근집합체 조합을 이용한 초고강도 섬유보강 철근 콘크리트 I형 보의 연성거동에 관한 실험 (The Ductile Behavior Test of the Ultra High Perfomance Fiber Reinforced I Beam by the Combination of the Fiber and Group of Reinforcement Bar)

  • 박진영;한상묵
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.18-24
    • /
    • 2016
  • 본 논문은 강섬유의 일부를 철근집합체로 대체하여 초고강도 섬유보강 철근 콘크리트 I 형보의 연성거동을 유도하는 것을 목적으로 한다. 강섬유와 철근집합체의 조합을 가진 초고강도 콘크리트 I 형보 대한 휨거동 실험을 수행하였다. 강섬유의 혼입률은 0%, 0.7%, 1%, 1.5%, 2%이다. 철근집합체와 PS강연선 집합체가 압축구역에서 콘크리트를 구속하기 위해 사용되었다. 철근집합체와 강연선 집합체의 길이도 실험요소 중 하나이다. 이러한 실험요소를 조합하여 9개의 초고강도 철근 콘크리트 I 형보를 제작하였다. 강섬유 뿐만 아니라 종방향의 철근 집합체도 초고강도 철근 콘크리트 I형 보의 연성거동을 유도하는데 효과를 가지고 있다. 강섬유 혼입률 0.7% 또는 1%와 철근집합체를 사용한 조합이 I형 보의 효과적인 연성 거동을 보여주고 있다. 하중과 처짐관계 및 균열양상 등이 좁은 간격을 가진 작은 직경의 종방향 철근 집합체의 유용성을 나타내고 있다.

사면 하부지반에 종단 방향으로 굴착한 얕은 터널에서 측벽변형에 따른 터널 주변지반의 거동에 대한 실험적 연구 (Experimental Study on the Ground Behavior around a Tunnel due to the Sidewall Deformation of Shallow Tunnel in Longitudinal Direction Excavated under the Slope)

  • 나용수;이상덕
    • 한국지반공학회논문집
    • /
    • 제35권5호
    • /
    • pp.21-30
    • /
    • 2019
  • 얕은 터널에 대한 연구는 종방향 하중전이와 수평지반에 대한 연구가 주를 이루었으며 사면 하부에 위치한 얕은 터널 주변지반의 거동연구는 미흡한 실정이다. 따라서 본 연구에서는 사면 하부에 위치한 터널의 종방향 굴진에 따른 터널 주변지반의 거동을 규명하기 위해 변위제어방식으로 모형시험을 실시하였다. 모형터널은 폭 320mm, 높이 210mm, 길이 55mm 규격의 강성이 큰 알루미늄 강체로 제작하였고, 모형지반은 3가지 규격의 탄소봉을 혼합하여 균질한 모형지반을 조성하였다. 모형시험은 사면 경사와 토피고를 변수로 측벽변형을 발생시키는 변위제어방식으로 실시하였으며, 터널 벽체의 하중변화, 터널 주변지반의 하중전이와 지표침하 변화를 측정하고 분석하였다. 지표침하의 변화는 경사가 증가할수록 수평지반보다 20~39%의 증가가 나타났다. 터널 천단부 및 측벽부의 하중 변화는 사면 경사가 증가할수록 천단부는 최대 20%가 증가하고, 측벽부는 사면 경사의 영향으로 하중비가 감소하는 것을 확인하였다. 연직하중은 토피고가 1.0D 이하에서는 최대 128%의 하중증가가 나타났지만, 토피고가 1.5D 이상에서는 수평지반과 큰 차이가 나타나지 않았다. 이것으로 사면 경사는 토피고 1.0D에서 가장 큰 영향이 나타나는 것을 확인하였다.

포스트텐션 콘크리트 포장 공법 설계지침 개발 (Design Guide of Post-Tensioned Prestressed Concrete Pavement)

  • 박희범;김성민;배종오
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.17-18
    • /
    • 2010
  • 이 연구는 포스트텐션 콘크리트 포장(PTCP) 공법의 설계지침을 개발하기 위하여 수행되었다. 구조해석 및 실험을 통해 PTCP의 거동을 분석하였으며 이를 바탕으로 슬래브 크기, 설계 환경 및 차륜 하중, 종방향 및 횡방향 긴장과 긴장방식 결정을 통해 최적의 PTCP 설계지침을 개발하였다.

  • PDF

슬래브 형식 프리캐스트 모듈러교량 종방향 연결부의 휨강도 및 균열 사용성에 관한 정적재하실험 (Static Load Tests on Flexural Strength and Crack Serviceability of a Longitudinal Joint for the Slab-Type Precast Modular Bridges)

  • 이정미;이상윤;송재준;박경훈
    • 콘크리트학회논문집
    • /
    • 제27권2호
    • /
    • pp.137-145
    • /
    • 2015
  • 슬래브 형식 프리캐스트 모듈러교량은 횡방향으로 분절되어 제작된 프리캐스트 모듈을 현장에서 조립하는 형태의 교량으로서 분절된 프리캐스트 모듈 사이에는 종방향 연결부가 형성되며, 프리캐스트 모듈의 조립은 모듈 사이에 고성능 무수축 모르타르를 주입한 후에 횡방향으로 긴장력을 도입함으로써 이루어진다. 본 연구에서는 연결부의 휨 거동을 바탕으로 설계단계에서 산정된 횡방향 도입 긴장력 수준의 적정성 및 연결부의 형상이 휨 거동에 미치는 영향을 검토하기 위해 슬래브 형식 프리캐스트 모듈러교량의 연결부를 적용한 실험체를 이용한 4점 재하 휨 실험과 3점 재하 휨 실험을 수행하였다. 4점 재하 휨 실험은 긴장력의 변화가 연결부의 휨강도에 영향을 미치며 연결부의 형상은 순수한 휨모멘트가 작용하는 단면의 휨강도에는 영향을 미치지 않는다는 결과를 보여주었다. 3점 재하 휨 실험은 연결부에 휨모멘트와 전단력을 동시에 작용시키는 실험 방법으로, 연결부의 형상이 휨강도와 균열 사용성에 영향을 미친다는 결과를 보여주었다. 두 가지의 휨 실험 결과로부터 본 연구에서 적용한 긴장력은 적정하였으며 두 개의 전단키를 갖는 연결부가 균열 사용성 측면에서 유리하다는 것을 확인할 수 있었다.

순차혼합모형에 의한 전단류 분산 해석 (Analysis of Shear Flow Dispersion Using Sequential Mixing Model)

  • 서일원;손은우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.991-995
    • /
    • 2005
  • 본 연구에서는 1차원 이송-분산 과정을 연구하고 전단류 흐름 및 분산거동에 있어 Taylor 이론의 핵심이라 할 수 있는 '종방향 이송과 횡방향 확산의 균형'을 기본 개념으로 하여, 이송과 확산을 분리하여 이 두 과정이 순차적으로 발생한다는 가정에 의거한 순차혼합모형을 제시하였다. 본 모형에서는 가상의 하천을 여러 개의 행과 종방향 거리를 길이가 일정한 구획으로 나누어 연속적인 분산과정을 이산적인 형태로 나타낼 수 있게 하고, 횡방향 유속분포에 따라 각 행에 각기 다른 유속을 할당한다. 오염물질은 하폭방향 선오염원으로 원점에 순간주입되며, 주어진 혼합시간 $t_m$ 동안 각 행의 오염물질들이 각자에 할당된 유속을 따라 진행하고 진행이 끝난 후 횡방향 확산이 순간적으로 이루어진다. 횡방향 확산은 횡방향으로 완전하게 일어남을 가정하여, 횡방향 확산이 끝나면 각 열에서의 농도 평균값이 할당된다. 이러한 혼합시간 $t_m$ 동안의 순차적인 이송-확산 과정이 반복되면서 오염물질의 분산이 일어나며, 농도 분포 그래프를 그릴 수 있게 된다. 순차혼합모형을 가상의 직선하천에 적용하여 종분산계수를 유도하였는데, 본 연구에서 유도된 종분산계순식은 Fischer.가 제안한 식과 유사한 형태로 나타남을 알 수 있었다. 본 모형에서 계산된 농도분포 곡선을 해석해와 비교한 결과,두 곡선이 적절히 일치함을 확인할 수 있었으며 해석해와의 비교를 통해 종분산계수 K가 혼합시간 $t_m$과 선형관계임을 확인할 수 있었다. 수심대하폭비에 따라 각기 다른 유속분포에 적용하여 종분산계수 K가 유속편차강도의 제곱에 비례관계에 있음이 밝힐 수 있었다. 수압은 $4.69kg/cm^2$으로 나타났다. 밸브 개폐도가 $100\%$일 때가 밸브를 $60\%$$80\%$ 개폐시켰을 때보다 $0.3kg/cm^2,\;0.29kg/cm^2$ 낮게 나타나 밸브를 전체 개방 했을 때 관로내의 수압이 상수설계기준에 적합한 수압을 유지함을 알 수 있다. 상수관로 설계 기준에서는 관로내 수압을 $1.5\~4.0kg/cm^2$으로 나타내고 있는데 $6kg/cm^2$보다 과수압을 나타내는 경우가 $100\%$로 밸브를 개방하였을 때보다 $60\%,\;80\%$ 개방하였을 때가 더 빈번히 발생하고 있으므로 대상지역의 밸브 개폐는 $100\%$ 개방하는 것이 선계기준에 적합한 것으로 나타났다. 밸브 개폐에 따른 수압 변화를 모의한 결과 밸브 개폐도를 적절히 유지하여 필요수량의 확보 및 누수방지대책에 활용할 수 있을 것으로 판단된다.8R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10}{\times}0.797{\times}e^{-0.021s(\%)}$

  • PDF