• Title/Summary/Keyword: 종단방전

Search Result 6, Processing Time 0.027 seconds

Properties of Longitudinal & Transverse Discharge in a Tubular Fluorescent Lamp (직관형 형광램프의 종단방전과 횡단방전의 특성)

  • Chung, J.Y.;Kim, J.H.;Jeong, J.M.;Jin, D.J.;Kim, H.C.;Bong, J.H.;Hwang, H.C.;Lee, M.S.;Koo, J.H.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.322-330
    • /
    • 2008
  • The properties of discharge, luminance, and spectroscopy are investigated in a longitudinal and transverse discharge fluorescent lamps with tube of outer diameter 4 mm. The sample lamps are prepared to be three kinds of gas composition such as mercury lamps of Ne(95%)+Ar(5%)+Hg(2 mg), the mercury-free lamps of Xe 100% and Ne+Xe(4%). The gas pressure is in the range of $5{\sim}300\;Torr$. In the mercury lamps, the longitudinal discharge having a positive column is high in luminance and efficiency, while the transverse discharge is no luminance at all. In the Xe-lamps, the transverse discharge shows relatively good in efficiency as compared with the longitudinal discharge which has a high discharge voltage and a low luminance and efficiency. In the transverse discharge of relatively high efficiency, a pure Xe(100%) gas discharge has a higher efficiency than the mixture gas of Ne+Xe(4%). Through these experiments, the properties of mercury and xenon lamps are verified. In the mercury lamps, the longitudinal discharge of tubular fluorescent lamps is high in luminance and efficiency, while the transverse discharge of flat panel fluorescent lamps are low in luminance efficiency. In the mercury-free lamps, the flat fluorescent lamps of transverse discharge having a high pressure ${\sim}100\;Torr$ with the pure Xe-gas are verified to be suggestable.

Defect Detection of 22.9kV Distribution Line based on the PD Detection (부분방전 검출을 이용한 22.9kV 배전케이블 실선로 결함 검출)

  • Lee, Jeon-Seon;Kim, Jung-Yoon;Kim, Seok-Jong;Lee, Dong-Geun;Seo, Kyung-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.53-55
    • /
    • 2004
  • 부분방전 검출을 이용한 XLPE 케이블 진단은 중간 및 종단 접속재의 계면에 존재하는 결합을 검출할 수 있는 가장 효과적인 방법으로 제시되고 있지만 현장의 큰 노이즈로 인하여 신뢰성 있는 진단이 쉽지 않다. 하지만 국내에서 많은 연구가 이루어진 송전케이블 진단 기술을 바탕으로 배전케이블 진단에 적용하여 종단접속부에서 발생된 부분방전을 성공적으로 검출하였고 해체 조사를 통하여 결함을 검출하였다. 본 논문은 참고문헌[1]에 발표한 논문에 연결되는 논문으로 전편은 2004년 2월 부분방전 검출사례를 보고한 논문이고 본 논문에서는 8월 계획정전을 통하여 문제된 접속함을 교체한 후 해체조사를 통하여 결함을 검출한 사례보고이다.

  • PDF

NUMERICAL INVESTIGATION ON CAPTURE OF NANOPARTICLES IN ELECTROSTATIC PRECIPITATOR WITHOUT CORONA DISCHARGER (코로나 방전기가 없는 전기집진기의 나노입자 집진에 관한 수치해석)

  • Lee, J.W.;Jang, J.S.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.103-108
    • /
    • 2010
  • This article presents computational fluid dynamics (CFD) simulations of nanoparticle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program(CFD-ACE) including electrostatic theory and Lagrangian-based equation for nanoparticle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in nanoparticle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

  • PDF

Numerical Investigation on Capture of Sub-Micron particles in Electrostatic Precipitator without Corona Discharger (코로나 방전기가 없는 전기집진기의 미세입자 집진에 관한 수치해석)

  • Lee, Jin-Woon;Jang, Jae-Sung;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2011
  • This article presents computational fluid dynamics (CFD) simulations of sub-micron particle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program (CFD-ACE) including electrostatic theory and Lagrangian-based equation for sub-micron particle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in sub-micron particle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

Load-Balancing and Fairness Support Mechanisms in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서의 부하 균등화 및 공평성 지원 방법)

  • Ahn Sanghyun;Yoo Younghwan;Lim Yujin
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.889-894
    • /
    • 2004
  • Most ad-hoc routing protocols such as AODV(Ad Hoc On-Demand Distance Vector) and DSR(Dynamic Source Routing) do not try to search for new routes if the network topology does not change. Hence, with low node mobility, traffic may be concentrated on several nodes, which results in long end-to-end delay due to congestion at the nodes. Furthermore, since some specific nodes are continuously used for long duration, their battery power may be rapidly exhausted. Expiration of nodes causes connections traversing the nodes to be disrupted and makes many routing requests be generated at the same time. Therefore, we propose a load balancing approach called Simple Load-balancing Approach (SLA), which resolves the traffic concentration problem by allowing each node to drop RREQ (Route Request Packet) or to give up packet forwarding depending on its own traffic load. Meanwhile, mobile nodes nay deliberately give up forwarding packets to save their own energy. To make nodes volunteer in packet forwarding. we also suggest a payment scheme called Protocol-Independent Fairness Algorithm (PIEA) for packet forwarding. To evaluate the performance of SLA, we compare two cases where AODV employs SLA or not. Simulation results show that SLA can distribute traffic load well and improve performance of entire ad-hoc networks.